Achievement First Iluminar School Addition 85 Garfield Ave, Cranston, Rhode Island

DANIELLE SPICER
May 3, 2022
Revised October 14, 2022

Prepared by

Table of Contents

EXECUTIVE SUMMARY 1
1.0 GENERAL INFORMATION 2
1.1 Existing Conditions 2
1.1.1 General 2
1.2 Topography, Geology and Soils 2
1.3 Existing Contributing Areas 3
1.4 Proposed Conditions 3
1.4.1 General 3
1.5 Proposed Contributing Areas 4
2.0 STANDARD 1: LID SITE PLANNING AND DESIGN STRATEGIES 11
3.0 STANDARD 2: GROUNDWATER RECHARGE 12
4.0 STANDARD 3: WATER QUALITY 13
4.1 Water Quality Treatment Area 13
4.2 Water Quality Treatment Volume 13
4.3 Total Suspended Solids (TSS) Removal Computations 14
4.4 Total Phosphorus (TP) Removal Computations 14
4.5 Pathogen Removal Computations 14
5.0 STANDARD 4: CONVEYANCE AND NATURAL CHANNEL PROTECTION 16
6.0 STANDARD 5: OVERBANK FLOOD PROTECTION (Q_{p}) 17
6.1 Existing Tributary Areas 17
6.2 Proposed Tributary Areas 18
6.3 Peak Discharge Runoff Rates 20
6.4 Methodology and Design Criteria 20
7.0 STANDARD 6: REDEVELOPMENT 27
8.0 STANDARD 7: POLLUTION PREVENTION 28
9.0 STANDARD 8: LAND USES WITH HIGHER POTENTIAL POLLUTANT LOADS 29
10.0 STANDARD 9: ILLICIT DISCHARGES 30
11.0 STANDARD 10: CONSTRUCTION EROSION AND SEDIMENTATION CONTROL 31
12.0 STANDARD 11: STORMWATER MANAGEMENT SYSTEM OPERATION AND MAINTENANCE 32
13.0 LID STORMWATER CREDIT 33
14.0 BEST MANAGEMENT PRACTICES (BMPS) 34
14.1 Deep Sump and Hooded Catch Basins 34
Stormwater ReportCranston, RIAchievement First Iluminar School
Green Project No. 21075
14.2 Subsurface Infiltration Chambers (StormTech) 34
14.3 Hydrodynamic Separators (CDS) 34
14.4 Stormwater Components 34
14.4.1 Hydrologic and Hydraulic Analysis 35
14.4.2 Drainage Area Map 35
14.4.3 Details and elevations of the BMPs 35
14.4.4 Applicable Local and State Permits 35
14.4.5 Anticipated Legal Agreements Related to Stormwater 35
Tables
Table 1.1 - NRCS Soil Classification 3
Table 3.1 - Recharge Volume Summary 12
Table 4.1 - Stormwater Treatment Area 13
Table 4.2 - Water Quality Volume Summary 14
Table 4.3 - Water Quality Flow Summary 14
Table 4.4 - TSS, Pathogen, \& TP Removal Summary 15
Table 6.1 - Existing Conditions Drainage Area Characteristics 18
Table 6.2 - Proposed Conditions Drainage Area Characteristics 19
Table 14.1 - BMP Descriptions 34
Figures
Figure 1 - USGS Map 5
Figure 2 - Aerial Map 7
Figure 3 - Soils Map 9
Figure 4 - Existing Watershed Plan 22
Figure 5 - Proposed Watershed Plan 24

Appendices

Appendix A - Stormwater Management Plan Checklist
Appendix B - Hydrologic calculations
Appendix C - Sizing Criteria Calculations
Appendix D - Soil Information
Appendix E - Draft Soil and Erosion and Sediment Control Plan (SESC) (Bound Separately)
Appendix F -Plans (Bound Separately)

EXECUTIVE SUMMARY

This stormwater management report has been prepared as part of the Stormwater Management Application to the Rhode Island Department Environmental Management (RIDEM) for the Improvements to the Achievement First lluminar School project in Cranston, RI. This report describes the existing and proposed conditions and drainage patterns.

The project limits encompass the existing school at 85 Garfield Avenue in Cranston RI. The approximate project area is 201,360 square feet or 4.62 acres; however, only 2.38 acres will be disturbed.

The proposed project includes the construction of a new approximately 13,500 SF building addition, playground area, and site improvements to the existing school and parking lots. The proposed building addition will be constructed primarily over existing pervious area. Two proprietary stormwater treatment units and one subsurface stormwater infiltration basin are proposed on site for stormwater mitigation and treatment purposes.

The proposed redevelopment of this site does not disturb any resource areas but is located adjacent to resource areas. Tongue Pond is part of the Spectacle Pond subwatershed (Waterbody ID RI0006017L-07). The proposed stormwater mitigation systems will be designed in accordance with the RI State Stormwater Standards.

The proposed work will result in a minor increase in impervious area and a decrease in peak rates from the site for all applicable storm events. The proposed project qualifies as a redevelopment project as the existing conditions consists of more than 40% existing impervious surface coverage. Therefore, only Standards 2, 3, and 7-11 will be addressed in this report.

This report outlines the conditions that presently exist at 85 Garfield Avenue and impacts on those conditions from localized changes to the areas of the paved surfaces that will result from the proposed work. Effects of modified surface drainage systems will be described in addition to how these improvements are intended to address the requirements of the "Rhode Island Stormwater Design and Installations Standards Manual" last amended in March 2015.

This project improves the functionality of the existing school lot and improves the quality of stormwater runoff discharged from the site. This project incorporates the installation of practical BMPs.

The following report was created in accordance with the "Rhode Island Stormwater Design and Installations Standards Manual" last amended in March 2015 and is organized into sections that correspond to the categories listed in the "Rhode Island Stormwater Management Checklist". The checklist is included in Appendix A of this report. The following is a more detailed description of the existing and proposed drainage areas and the design methodology for this project.

1.0 GENERAL INFORMATION

The proposed project consists of a new building addition, parking lot and driveway improvements, and a basketball court. Stormwater Best Management Practices (BMP's) have been incorporated into the design to meet the required standards to the maximum extent practicable.

1.1 Existing Conditions

1.1.1 General

The site at 85 Garfield Ave is located in Cranston, Rhode Island and is the location of Achievement First lluminar School. There is an existing three-story school building currently on the property that is approximately $20,000 \mathrm{SF}$. There are existing parking lots adjacent to the school building to the north, east, and south. Vehicle entrance and egress points exist on the east side of the project limit toward Garfield Ave.

The project limits surrounding the school property of 85 Garfield Ave totals approximately 4.62 acres. The project site is situated just west of the Huntington Expressway (Route 10). The property is abutted by Garfield Avenue to the east, a Cranston Police Station and associated paved parking lot to the north, a paved bike trail, the Washington Secondary Trial, Tongue Pond to the south, and residential buildings to the west.

1.2 Topography, Geology and Soils

The site topography generally slopes from north to south towards Tongue Pond. Parking lots within the site limits generally have slopes that are close to 4%. Pervious grass areas outside of the work limits to the south slope more sharply toward Tongue Pond.

The Natural Resources Conservation Service (NRCS) Soil Survey for Providence County, RI defines most of the soils within the project as Merrimac-Urban (MU) with a portion of the project having (UD) UdorthentsUrban land complex, both falling under hydrologic soil group " A ". The site is also divided into soil groups (Pg) Pits, gravel, (Ur) Urban land, and (W) Water. Table 1.1 lists soil designations, soil names and the associated hydrological soil groups. Soils on site are contaminated with Polycyclic Aromatic Hydrocarbons (PAHs) in several locations; however, based on our pre-application meeting with RIDEM on 4/14/2022, stormwater treatment practices are suitable for infiltration.

A subsurface exploration program consisting of four test borings was completed by Sage EnviroTech Drilling Services of Pawtucket, Rhode Island in January 2022to determine the soil conditions more accurately within the site. A layer of silty granular fill was discovered to depths approximately one foot below the existing ground surface, placed as part of an earthen site capping. The earthen cap also consists of geotextile fabric underlying the clean granular fill. The full results of the soil testing and soil conditions are included in the Geotechnical Engineering Report prepared for the site by Paul B. Aldinger \& Associated, dated February 2022 and included in Appendix D.

Refer to Figure 3, Soils Map, for locations of soils within the site. Appendix D contains a soils report generated using the NRCS website containing soil definitions for the soils within the analyzed watershed.

Table 1.1 - NRCS Soil Classification

MAP DESIGNATION State/PUBL. SYM.	SOIL NAME	Hydrologic Soil Group
Mu	Merrimac-Urban	A
Pg	Pits, gravel	A
UD	Udorthents-Urban land complex	
Ur	Urban Land	Water
W		

Groundwater readings were taken at the time of the drilling and measured at depths between approximately 21.6 and 25 feet below the ground surface. While groundwater levels could shift due to variations in rainfall and temperature, they are well below the bottom of the proposed infiltration basin, which is approximately 7.5^{\prime} below finish grade. Based on these results, the proposed infiltration system will exceed separation to groundwater requirements. The full results of the geotechnical engineering report are included in Appendix D.

1.3 Existing Contributing Areas

The existing site is mostly covered by impervious surfaces including the existing school building, bituminous concrete parking lots, and driveways. The site also includes some pervious areas with a small lawn to the north of the building and intermittent grassed medians. Drainage on the site sheets flows from north to south towards Tongue Pond. Stormwater runoff is collected by two separate closed drainage systems via catch basins in the parking lots and surrounding the school. The majority of runoff is collected along the eastern side and the closed drainage system discharges into an existing subsurface detention system that flows to an outlet control structure that eventually discharges to a Sediment basin to the south of the site. A small portion of runoff from the western side of the site discharges to a closed drainage system and directly to the sedimentation pond for treatment with an overflow directly into tongue pond. All stormwater within the project limits eventually discharges to DP-1 at Tongue Pond.

Offsite flow tributary is minimal due to the flat grading surrounding the site that slopes away. There are no jurisdictional wetlands within the project limits, but there are wetlands associated with Tongue Pond. The Water Quality Volume Calculation Worksheet in Appendix C further details the extents of the project area.

1.4 Proposed Conditions

1.4.1 General

In general, the proposed site will follow the same stormwater patterns from existing conditions. There will be improvements to the parking lots adjacent to both buildings, resulting in general geometry changes. The proposed building will replace a portion of the pervious lawn area to the north of the existing building. The new roof area from the building will be routed directly to a new subsurface infiltration system. Several existing catch basins will be rerouted at the west of the building, and new catch basins are proposed to capture the required volume of stormwater on site to be treated in order to meet RI state requirements.

The site will implement BMP's for stormwater management. A new drainage connection to the existing closed drainage system will be necessary as an overflow from the proposed subsurface infiltration system.

1.5 Proposed Contributing Areas

The basis of comparison between existing and proposed contributing area will be the same (4.62 acres). The proposed impervious area on site will increase by 0.52 acres due to the new building addition as well as geometry improvements to the surrounding parking lots and driveways. Under proposed conditions, stormwater runoff from the increase in impervious area plus 50\% of the disturbed existing impervious area will be treated to the full extent, which is an improvement to existing conditions. The entire site will continue to eventually discharge the same as existing discharge point, Tongue Pond.
(This page is intentionally left blank)

Page 6

(This page is intentionally left blank)

GREEN INTERNATIONAL AFFILIATES, INC
Page 6

(This page is intentionally left blank)

GREEN INTERNATIONAL AFFILIATES, INC
Page 8

(This page is intentionally left blank)

GREEN INTERNATIONAL AFFILIATES, INC
Page 10

2.0 STANDARD 1: LID SITE PLANNING AND DESIGN STRATEGIES

The proposed project is a redevelopment project. Therefore, Standard 1 does not apply; however, the project is incorporating some LID design strategies. The project will propose a subsurface system that will treat 100% of the increase in impervious area as well as 50% of the disturbed impervious area from the site.

3.0 STANDARD 2: GROUNDWATER RECHARGE

Standard 2 requires that stormwater must be recharged within the same subwatershed to maintain baseflow at pre-development recharge levels to the maximum extent practicable in accordance with the requirements and exemptions.

A subsurface infiltration system is proposed and sized based on the required treatment area. The project site soils are classified as "A" soils based on the Natural Resource Conservation Service (NRCS) soils report. Groundwater is located at depths between 21.6 and 25 feet below the ground surface as noted in the Geotechnical Engineering report in Appendix D.

The proposed project provides the required recharge for the site. The subsurface infiltration basin is sized to recharge the required recharge volume. Pertinent recharge calculations showing the required and provided recharge volume to the BMP are included in Appendix C of this report. A summary table of these calculations is below.

Table 3.1 - Recharge Volume Summary

Designation	REv Required $\left(\mathrm{ft}^{3}\right)$	RE $_{v}$ Provided $\left(\mathrm{ft}^{3}\right)$
Subsurface Basin	2,475	4,489

4.0 STANDARD 3: WATER QUALITY

Standard 3 requires that stormwater runoff must be treated before discharge. The RI Stormwater Manual states that this standard is met when:
a. The required water quality volume $\left(W Q_{v}\right)$ is the amount of stormwater runoff that must be captured and treated from the entire runoff for 90% of the average annual storm event.

$$
\begin{aligned}
& W Q_{v}=\left(1^{\prime \prime}\right)(I) / 12 \\
& W Q_{v}=\text { water quality volume (acre-feet) } \\
& I=\text { impervious area (acres) }
\end{aligned}
$$

b. The WQ_{v} must be treated by at least one of the structural BMPs listed in Chapter 5 of the RI Stormwater Manual at each location where a discharge of stormwater will occur.
c. Structural BMPs that are used achieve the following minimum average pollutant removal efficiencies:

- 85% Total Suspended Solids (TSS)
- 60% Pathogens
- 30% Total Nitrogen (TN) for discharges to saltwater or tidal systems
- 30\% Total Phosphorous (TP) for discharges to freshwater system

4.1 Water Quality Treatment Area

As stated above, the required stormwater treatment area for the project is 1.02 acres. The total impervious area treated through the proposed BMP (subsurface basin) is approximately 1.14 acres. Stormwater runoff on the existing site is captured by catch basins which either flow into an existing subsurface system for detention purposes, or directly discharges into an existing sedimentation pond. Overflow conditions during larger storms discharge directly into Tongue Pond. The proposed subsurface system will not add a new discharge point and will utilize the existing outlet control structure that discharges into the sedimentation pond.

A Water Quality Volume Calculation Worksheet for the entire project has been prepared and included in Appendix C of this report. The following table is a summary of the required Stormwater Treatment Area (amount of impervious area that is required to be treated) and what is provided.

Table 4.1 - Stormwater Treatment Area

Designation	STA Required (acres)	STA Provided (acres)
Subsurface Basin	1.02	1.14

4.2 Water Quality Treatment Volume

The water quality volume provided for the subsurface infiltration system is based on the volume provided beneath the lowest orifice. Calculations showing the required and provided water quality volume to the
stormwater BMP is included in Appendix C of this report. The required WQv is based on the subsurface basin's catchment area. A summary table of these calculations is below.

Table 4.2 - Water Quality Volume Summary

Designation	WQ $_{v}$ Required $\left(\mathrm{ft}^{3}\right)$	WQv Provided (ft^{3})
Subsurface Basin	4,125	4,489

The project will require two Water Quality Structures (WQS) for pretreatment prior to discharging to the subsurface infiltration basin. The proposed water quality pretreatment devices were sized to treat the required water quality flow rate. Calculations showing the required and provided water quality flow rates to the proprietary devices are included in Appendix B of this report. A summary table of these calculations is below.

Table 4.3 - Water Quality Flow Summary

Designation	WQ $_{F}$ Required (cfs)	WQ $_{F}$ Provided (cfs)
Subsurface Basin Pretreatment (WQS-1)	0.33	0.33
Subsurface Basin Pretreatment (WQS-2)	0.64	0.64

4.3 Total Suspended Solids (TSS) Removal Computations

Per the Rhode Island Stormwater Design and Installation Standards Manual, structural BMPs are required to achieve 85% total suspended solids (TSS) removal. The subsurface system is treating roof runoff, which does not require pretreatment; therefore, roof runoff will be connected directly to the subsurface infiltration system. The system will only provide pretreatment for all other areas coming into the system through catch basins.

The subsurface infiltration basin will utilize two hydrodynamic separators (WQS) for the required pretreatment and will achieve a minimum of 25% TSS removal per Table H-4-BMP Pollutant Removal Rating Values for Other BMPs in the Rhode Island Stormwater Design and Installation Standards Manual. See Appendix C for TSS calculations showing the removal rates for the hydrodynamic separators provided by Contech. After pretreatment, the infiltration basin will achieve 90% TSS removal per Table $\mathrm{H}-3$ - Pollutant Removal Efficiency Rating Values for Water Quality BMPs in the RI Stormwater Manual.

4.4 Total Phosphorus (TP) Removal Computations

Per the Rhode Island Stormwater Design and Installation Standards Manual, structural BMPs are required to achieve 30\% total phosphorus (TP) removal.

The subsurface infiltration system (StormTech chambers) will achieve 65\% TP removal per Table H-3. This system will therefore meet the required 30% TP removal.

4.5 Pathogen Removal Computations

A review of the RIDEM GIS Environmental Resource Map for Tongue Pond indicates that there is no current TMDL. The proposed work is a site project and will not generate an increase in pathogens to the wetland systems around the project, which eventually discharge to Tongue Pond. Per the Rhode Island Stormwater Design and Installation Standards Manual, structural BMP is required to achieve 60% pathogen removal.

Per Table H-3 in the RI Stormwater Manual, the subsurface infiltration basin will achieve 90\% pathogen removal. The system will therefore meet the required 60\% pathogen removal.

As summarized above, the area discharging to the subsurface infiltration BMP will meet the required pollutant removal efficiencies, as shown in Table 4.4, below.

Table 4.4 - TSS, Pathogen, \& TP Removal Summary

Designation	TSS Removal	Pathogen Removal	TP Removal
Subsurface Basin with Pretreatment	90%	95%	65%

5.0 STANDARD 4: CONVEYANCE AND NATURAL CHANNEL PROTECTION

The proposed project is a redevelopment project which provides stormwater treatment via catch basins and roof drains to a subsurface infiltration system. There are no existing or proposed natural channels or open drainage ways; therefore, Standard 4 does not apply.

6.0 STANDARD 5: OVERBANK FLOOD PROTECTION (Qp)

The proposed project is a redevelopment project and fully meets Standard 5 requirements.

6.1 Existing Tributary Areas

6.1.1 Existing Contributing Areas

The existing drainage area is delineated in Figure 4 - Existing Conditions Watershed Plan. As shown on Figure 4, the existing stormwater management analysis can be summarized as three watershed areas of the entire site at the 85 Garfield Ave school property that contributes runoff to one discharge point. For the purpose of this hydrologic analysis, the following assumption was made:

- The total watershed area for the existing conditions was used as the comparison base for the watershed area in the proposed conditions.

A brief description of the contributing areas are below (see Table 6.1 - Existing Conditions Drainage Area Characteristics):

DRAINAGE AREA EDA-1A

This area consists of a small section of impervious driveway at the eastern limit of work and a small section of grass past the curb line to the southeast of the school. This area is the only section within the project limits that is not captured by an existing sedimentation pond. Stormwater from this area travels mostly via overland sheet flow into Tongue Pond at DP-1.

DRAINAGE AREA EDA-1B

This area consists of impervious roof area from the building footprint and bituminous concrete pavement from several parking lots to the east of the school. There are also small landscaped pervious areas, including parking medians and the lawn area to the north of the existing building. Stormwater runoff from this area travels via sheet flow and gutter flow towards several catch basins at low points. The catch basins discharge to a closed drainage system that connect to an existing subsurface detention system that outlets to the south. A roof leader from the building also connects into the existing subsurface detention system. Stormwater then travels south out of the subsurface system into an outlet control structure. The outlet control structure has a primary outlet that discharges into a sedimentation pond and an overflow that discharges directly into Tongue Pond for larger storm events. The sedimentation pond stores stormwater and overflows to Tongue Pond at DP-1.

DRAINAGE AREA EDA-1C

This area consists of the impervious driveway to the west of the school and a small parking lot to the south of the school. This area also consists of a portion of pervious grass at the northern lawn area and adjacent to the bus access driveway. Stormwater from this area travels via sheet flow and gutter flow into catch basins at low points. Stormwater then travels through a closed drainage system into an outlet control structure. The outlet control structure has a primary outlet that discharges into a sedimentation pond and an overflow that discharges directly into Tongue Pond for larger storm events. The sedimentation pond stores stormwater and overflows to Tongue Pond at DP-1.

6.1.2 Existing Drainage Area Summary

The following Table 6.1 - Existing Conditions Drainage Area Characteristics summarizes the existing drainage area including the pertinent information used for the hydrologic analysis.

Table 6.1 - Existing Conditions Drainage Area Characteristics

DRAINAGE AREA	AREA (ACRES)	$\%$ IMPERVIOUS	HSG	CURVE NUMBER	Tc(MIN)
EDA-1A	0.281	38	A	61	6.0
EDA-1B	3.481	82	A	87	6.0
EDA-1C	1.380	47	A	67	6.0

6.1.3 Peak Discharge Runoff Rates \& Volume

The existing peak flow rates, tributary to the design, were calculated for the 1-year, 2-year, 10-year, 25-year, and 100-year storm events. The results are presented in table 6.3 Peak Rates of Runoff.

6.2 Proposed Tributary Areas

6.2.1 Proposed Contributing Areas

The proposed stormwater management analysis can be summarized as four watershed areas that contribute runoff to one discharge point. The proposed tributary area of analysis will remain the same as the existing tributary area. Stormwater runoff on the site will be treated by proposed BMP's at one of the four proposed drainage areas. The proposed drainage system is designed to maintain the characteristics of the existing watershed area and post development runoff rates will be maintained at or below existing levels discharging into Tongue Pond at DP-1. The redevelopment of this site will result in a net increase in impervious area of 0.52 acres. The drainage area with the proposed subsurface BMP will have an overflow that will eventually discharge into the Tongue Pond at DP-1.

Tongue Pond is used as the only discharge point in the hydrologic analysis, as indicated on the attached Figure 5 - Proposed Watershed Plan. A brief description of the contributing area is below (see Table 6.2 Proposed Conditions Drainage Area Characteristics for each drainage area):

DRAINAGE AREA PDA-1A

This area remains the same as existing conditions and consists of a small section of impervious driveway at the eastern limit of work and a small section of grass past the curb line to the southeast of the school. This area is the only section within the project limits that is not captured by an existing sedimentation pond. Stormwater from this area travels mostly via overland sheet flow into Tongue Pond at DP-1.

DRAINAGE AREA PDA-1B

This area is mostly the same as existing conditions but has reduced in size due to rerouting area to PDA-1D. This area consists of impervious roof area from the building footprint and bituminous concrete pavement from several parking lots to the east of the school. There are also small landscaped pervious areas from
parking medians. Stormwater runoff from this area travels the same as existing conditions via sheet flow and gutter flow towards several catch basins at low points. The catch basins discharge to a closed drainage system that connect to an existing subsurface detention system that outlets to the south. A roof leader from the existing building also connects into the subsurface system. Stormwater then travels south out of the subsurface system into an outlet control structure. The outlet control structure has a primary outlet that discharges into a sedimentation pond and an overflow that discharges directly into Tongue Pond for larger storm events. The sedimentation pond stores stormwater and overflows to Tongue Pond at DP-1.

DRAINAGE AREA PDA-1C

This area is cut by approximately half under proposed conditions due to rerouting stormwater to PDA-1D. This area consists of a portion of the impervious driveway to the west of the school and a small parking lot to the south of the school. This area no longer includes a portion of pervious grass at the northern lawn area. Stormwater from this area travels the same as existing conditions via sheet flow and gutter flow into catch basins at low points. Stormwater then travels through a closed drainage system into an outlet control structure. The outlet control structure has a primary outlet that discharges into a sedimentation pond and an overflow that discharges directly into Tongue Pond for larger storm events. The sedimentation pond stores stormwater and overflows to Tongue Pond at DP-1.

DRAINAGE AREA PDA-1D

This area consists mostly of impervious area from the proposed building addition, a portion of the abutting driveway to the west, a section of the parking lot to the east, and the proposed basketball court to the north. Stormwater from this area travels via sheet flow and gutter flow into catch basins at low points. The runoff then enters a closed drainage system that discharges into a proposed subsurface infiltration system with pretreatment structures. Stormwater leaves the system either via infiltration or an outlet control structure to the south of the system. The stormwater continues to the south and connects into the downstream end of the existing subsurface detention system that discharges to the sedimentation pond which overflows to Tongue Pond at DP-1.

6.2.2 Proposed Drainage Area Summary

The following Table 6.2 - Proposed Conditions Drainage Area Characteristics summarizes the existing drainage area including the pertinent information used for the hydrologic analysis.

Table 6.2 - Proposed Conditions Drainage Area Characteristics

DRAINAGE AREA	AREA (ACRES)	$\%$ IMPERVIOUS	HSG	CURVE NUMBER	Tc(MIN)
PDA-1A	0.281	38%	A	61	6.0
PDA-1B	2.690	90%	A	92	6.0
PDA-1C	0.654	68%	A	79	6.0
PDA-1D	1.518	75%	A	83	6.0

6.2.3 Peak Discharge Runoff Rates \& Volume

The proposed peak flow rates, tributary to the design, were calculated for the 1-year, 2-year, 10-year, 25year, and 100-year storm events. The results are presented in table 6.3 Peak Rates of Runoff.

6.3 Peak Discharge Runoff Rates

The peak flow rates were calculated for the 2-year, 10-year, 25-year, and 100-year storm events under existing conditions and proposed conditions. The net increase of impervious area of 0.52 acres will be mitigated with an Stormwater BMP and will result in a decrease in peak rates for all storm events analyzed. These results are demonstrated in the Hydrologic Calculations in Appendix B. The following Table 6.3 represents a comparison between existing and proposed conditions of the peak rates of runoff from the proposed development site tributary to the discharge point.

Table 6.3 - Peak Rates of Runoff

DISCHARGE POINT		1-YEAR STORM (CFS)	2-YEAR STORM (CFS)	10-YEAR STORM (CFS)	25-YEAR STORM (CFS)	100-YEAR STORM (CFS)
DP-1	Existing	6.52	9.08	16.65	22.58	35.71
	Proposed	6.51	8.50	15.30	20.85	30.53

6.4 Methodology and Design Criteria

The drainage analysis was performed using the Soil Conservation Service (SCS) TR-55 and TR-20 methodologies and the computer program HydroCAD 10.0 by HydroCAD Software Solutions, LLC.

The analysis was performed on the 1-year, 2-year, 10-year, 25-year, and 100-year frequency rainfall events. Rainfall depths were taken from Table 3-1 Design Rainfall Amounts for Rhode Island in the Rhode Island Stormwater Design Manual, dated 2015. The events were based on the 24-Hour Type-III duration storm.

The following rainfall depths were used in the calculations:

Storm Event	Rainfall Depth
1-Year	2.72 inches
2-Year	3.30 inches
$10-Y e a r$	4.90 inches
$25-Y e a r$	6.10 inches
$100-Y e a r$	8.70 inches

The "time of concentration" $\left(T_{c}\right)$ for each watershed was determined by finding the time necessary for runoff to travel from the hydraulically most distant point in the watershed to the point of concentration. The travel path was drawn based on the topography and the time was calculated using the TR-55 Method and HydroCAD. A minimum T_{c} of 6.0 minutes was used.

Curve numbers were developed for each of the different use categories and hydrologic soil group types within each watershed area. The curve numbers were based on the SCS TR-55 methodology and are included in the HydroCAD input and output found in Appendix B.
(This page is intentionally left blank)

7.0 STANDARD 6: REDEVELOPMENT

The improvements to Achievement First lluminar School project are considered Redevelopment and therefore Standard 6 is applicable to this project. Redevelopment is defined as any construction, alteration, or improvement that disturbs a total of 10,000 sf or more of existing impervious area where the existing land use is commercial, industrial, institutional, governmental, recreational, or multi-family residential. Standard 6 requires that sites with 40% or more existing impervious surface coverage only need to address Standards 2,3 and $7-11$. The total site area is 4.62 acres. The total existing impervious area within the limit of work is 3.08 acres (67% impervious) (see Water Quality Volume Calculation Worksheet in Appendix C) of the total area within the limit of work; therefore, the project site is considered Redevelopment.

This project provides an opportunity to improve the functionality of the existing site, and to improve upon the quality of discharged stormwater, to the extent that it is practical to do so. The proposed stormwater enhancements are summarized below:

- The new system will install catch basins with 4' sumps and hoods in areas where new catch basins are proposed.
- Following construction of the site and drainage improvements, the storm drainage system will be flushed, and accumulated sediment will be removed from the proposed drainage structures. Sediment will be disposed of legally offsite.
- The quality of stormwater runoff will be significantly improved with the installation of two proprietary water quality structures and an additional subsurface infiltration system.

8.0 STANDARD 7: POLLUTION PREVENTION

Standard 7 requires that all development sites use source control and pollution prevention measures to minimize the impact that the land use may have on stormwater runoff quality. These measures shall be outlined in a stormwater pollution prevention plan for post-development conditions.

The project will disturb more than one acre of land during the construction process and will require a RIPDES Construction General Permit issued by the Rhode Island Department of Environmental Management (RIDEM). As a result, a Soil Erosion and Sediment Control Plan (SESC) will be required. The SESC document will satisfy the requirements of the Construction General Permit and the construction period erosion, sedimentation and pollution prevention plan requirements outlined in Standard 7 of the Rhode Island Stormwater Design and Installation Standards Manual. A draft SESC has been prepared and is included in Appendix E of this report (bound separately).

9.0 STANDARD 8: LAND USES WITH HIGHER POTENTIAL POLLUTANT LOADS

While the soils on site are contaminated with Polycyclic Aromatic Hydrocarbons (PAHs) the improvements to the Achievement First Iluminar School are not considered a Land Use with Higher Potential Pollutant Loads (LUHPPL) and therefore Standard 8 is not applicable to this project. As noted above, during the preapplication meeting with RIDEM, it was noted that infiltration BMP's are allowed on-site to mitigate stormwater runoff and are not subject to Standard 8. .

10.0 STANDARD 9: ILLICIT DISCHARGES

Standard 9 of the RI Stormwater Manual prohibits illicit discharges to stormwater management systems, including discharges from onsite wastewater treatment systems (OWTS), and subdrains and French drains near OWTS that do not meet the State's OWTS Rules. Illicit Discharges to the stormwater system are discharges not entirely comprised of stormwater that are not specifically authorized by a National Pollutant Discharge Elimination System (NPDES) or Rhode Island Pollutant Discharge System (RIPDES) permit.

Included with the report is a Drainage and Utility Plan that displays the location of all stormwater management components as well as other utilities (existing and proposed) on the project site. There are no known combined sewer pipes within the site to the best of our knowledge and closed stormwater systems discharge per the RIPDES permit.

11.0 STANDARD 10: CONSTRUCTION EROSION AND SEDIMENTATION CONTROL

Standard 10 of the RI Stormwater Manual requires erosion and sedimentation control (ESC) practices to be utilized during the construction phase as well as during any land disturbing activities. ESC practices must meet the following minimum design criteria:

- Temporary sediment trapping practices must be sized to store 1-inch of runoff from the contributing area or per the sediment volume method (Rhode Island Soil Erosion and Sediment Control Handbook), whichever is greater;
- And temporary conveyance practices must be sized to handle the peak flow from the 10-year, 24hour, Type III design storm.

The Soil Erosion and Sediment Control Plan (SESC) document required per the RIPDES Construction General Permit will satisfy the erosion, sedimentation and pollution prevention plan requirements outlined in Standard 10 of the Rhode Island Stormwater Design and Installation Standards Manual. A draft SESC has been prepared and is included in Appendix E of this report (bound separately).

12.0 STANDARD 11: STORMWATER MANAGEMENT SYSTEM OPERATION AND MAINTENANCE

The goal of the Operation and Maintenance (O\&M) plan is not only to protect resources on-site or nearby, but also to protect resources in the region that may be affected by the activities at the site. The Achievement First Iluminar School will be responsible for the operation and maintenance of the stormwater management system which include street sweeping, operations and maintenance of the proposed BMPs, and catch basin cleaning. See attached O\&M memo for more information.

13.0 LID STORMWATER CREDIT

The project is not seeking any stormwater credit; therefore, this section is not applicable.

14.0 BEST MANAGEMENT PRACTICES (BMPS)

The Rhode Island Stormwater Design and Installation Standards Manual requires detailed information for all structural stormwater BMPs.

Several types of structural best management practices (BMPs), in various combinations, are proposed to treat stormwater generated on the site. These measures include deep sump catch basins with hoods, proprietary water quality treatment devices, and a subsurface infiltration basin. Stormwater BMPs implemented at the site are briefly described below and are detailed on the Plans.

14.1 Deep Sump and Hooded Catch Basins

New catch basins specified for the project are constructed with sumps (minimum 4 feet) and hooded outlets to trap debris, sediments, and floating contaminants. The proper removal of sediments and associated pollutants and trash occurs only when catch basin inlets and sumps are cleaned out regularly. With proper maintenance deep sump/hooded basins are effective traps for large sediment, trash and debris that could otherwise be deposited in the downstream stormwater management features and/or resource areas.

14.2 Subsurface Infiltration Chambers (StormTech)

Subsurface infiltration chambers are manufactured chambers designed to retain and infiltrate stormwater runoff. They are most useful in constrained areas where aboveground systems may not be possible. It was sized to treat the required water quality volume per the RI Stormwater Manual.

14.3 Hydrodynamic Separators (CDS)

Hydrodynamic separators are manufactured structures designed to pretreat stormwater. The CDS hydrodynamic separator uses swirl concentration and continuous deflective separation to screen, separate and trap trash, debris, sediment, and hydrocarbons from stormwater runoff. CDS captures and retains 100\% of floatables and neutrally buoyant debris 4.7 mm or larger, effectively removes sediment, and incorporates a non-blocking screen. The two units were sized to treat the required water quality flow per the RI Stormwater Manual.

Table 14.1, below, lists the BMPs used throughout the site and describes the function they provide.
Table 14.1 - BMP Descriptions

BMP Number	Type of BMP	Function Provided by the BMP					
		Pretreatment	$R E_{V}$	WQv	$\mathrm{WQ}_{\text {F }}$	CPv	Qp
1	Catch basins with hoods and 4-foot sumps	X				N/A	N/A
2	Subsurface Infiltration Chambers		X	X		N/A	X
3	Hydrodynamic Separators (WQS)	X			X	N/A	N/A

14.4 Stormwater Components

In addition to the description of the BMPs, the following components are also required per the Stormwater Management Checklist:

14.4.1 Hydrologic and Hydraulic Analysis

The proposed project is a redevelopment project, so a Standards 4 and 5 did not apply. Therefore, a hydrologic and hydraulic analysis was not completed.

14.4.2 Drainage Area Map

Pre- and post-development watershed maps (Figures 4 and 5) are included in this report.

14.4.3 Details and elevations of the BMPs

Details of each stormwater BMP, including rim and invert elevations, are included in the plan set in Appendix E of this report.

14.4.4 Applicable Local and State Permits

The following are the applicable State and local permits:

- RIPDES Construction General Permit
- RIDEM Wetlands Permit (Request for Preliminary Determination)

14.4.5 Anticipated Legal Agreements Related to Stormwater

There are no anticipated legal agreements for this proposed project site related to stormwater.

APPENDIX A - STORMWATER MANAGEMENT PLAN CHECKLIST

- Stormwater Management Plan Checklist

APPENDIX A: STORMWATER MANAGEMENT PLAN CHECKLIST AND LID PLANNING REPORT - STORMWATER DESIGN SUMMARY

PROJECT NAME
Achievement First Iluminar School Addition
TOWN
Cranston, RI
BRIEF PROJECT DESCRIPTION:
Site drainage and layout improvements and school building addition.
(RIDEM USE ONLY)
STW/WQC File \#:
Date Received:

Stormwater Management Plan (SMP) Elements - Minimum Standards

When submitting a SMP, ${ }^{1}$ submit four separately bound documents: Appendix A Checklist; Stormwater Site Planning, Analysis and Design Report with Plan Set/Drawings; Soil Erosion and Sediment Control (SESC) Plan, and Post Construction Operations and Maintenance (O\&M) Plan. Please refer to Suggestions to Promote Brevity.

Note: All stormwater construction projects must create a Stormwater Management Plan (SMP). However, not every element listed below is required per the RIDEM Stormwater Rules and the RIPDES Construction General Permit (CGP). This checklist will help identify the required elements to be submitted with an Application for Stormwater Construction Permit \& Water Quality Certification.

PART 1. PROJECT AND SITE INFORMATION

PROJECT TYPE (Check all that apply)

\square Residential	\square Commercial	\square Federal	\square Retrofit	\square Restoration
\square Road	\square Utility	\square Fill	\square Dredge	\square Mine
\boxtimes Other (specify): Institutional				

SITE INFORMATION

\boxtimes Vicinity Map
INITIAL DISCHARGE LOCATION(S): The WQv discharges to: (You may choose more than one answer if several discharge points are associated with the project.)

\boxtimes Groundwater	\boxtimes Surface Water	\square MS4
\square GAA	\square Isolated Wetland	\square RIDOT
\square GA	\boxtimes Named Waterbody	\square RIDOT Alteration Permit is Approved
\boxtimes GB	\square Unnamed Waterbody Connected to Named	\square Town
\quadWaterbody	\square Other (specify):	

ULTIMATE RECEIVING WATERBODY LOCATION(S): Include pertinent information that applies to both WQ_{v} and flow from larger storm events including overflows. Choose all that apply, and repeat table for each waterbody.

| \boxtimes Groundwater or Disconnected Wetland | \square SRWP |
| :--- | :--- | :--- |
| \boxtimes Waterbody Name: Tongue Pond | \square Coldwater $\quad \square$ Warmwater . \quad Unassessed |
| \boxtimes Waterbody ID: RI0006017L-10 | $\square 4^{\text {th }}$ order stream of pond 50 acres or more |
| \square TMDL for: N/A | \square Watershed of flood prone river (e.g., Pocasset River) |
| \square Contributes to a priority outfall listed in the TMDL | \square Contributes stormwater to a public beach |
| \square 303(d) list - Impairment(s) for: N/A | \square Contributes to shellfishing grounds |

[^0]
Stormwater Management, Design, and Installation Rules (250-RICR-150-10-8)

PROJECT HISTORY

® RIDEM Pre- Application Meeting	Meeting Date: 4/14/2022	Q Minutes Attached
\square Municipal Master Plan Approval	Approval Date:	\square Minutes Attached
\square Subdivision Suitability Required	Approval \#:	
\square Previous Enforcement Action has been taken on the property	Enforcement \#:	
FLOODPLAIN \& FLOODWAY See Guidance Pertaining to Floodplain and Floodways		
\square Riverine 100-year floodplain: FEMA FLOODPLAIN FIRMETTE has been reviewed and the 100-year floodplain is on site		
\square Delineated from FEMA Maps		
NOTE: Per Rule 250-RICR-150-10-8-1.1(B)(5)(d)(3), provide volumetric floodplain compensation calculations for cut and fill/displacement calculated by qualified professional		
\square Calculated by Professional Engineer		
Calculations are provided for cut vs. fill/displacement volumes proposed within the 100-year floodplain	Amount of Fill (CY):	
	Amount of Cut (CY):	
\square Restrictions or modifications are proposed to the flow path or velocities in a floodway		
\square Floodplain storage capacity is impacted		
\boxtimes Project area is not within 100-year floodplain as defined by RIDEM		

CRMC JURISDICTION

CRMC Assent required
Property subject to a Special Area Management Plan (SAMP). If so, specify which SAMP:
Sea level rise mitigation has been designed into this project

LUHPPL IDENTIFICATION - MINIMUM STANDARD 8:

1. OFFICE OF Land Revitalization and Sustainable Materials Management (OLRSMM)

		Road Salt Storage and Loading Areas (exposed to rainwater)	
	\square Outdoor Storage and Loading/Unloading of Hazardous Substances		
3. STORMWATER INDUSTRIAL PERMITTING			
		The site is associated with existing or proposed activities that are considered Land Uses with Higher Potential Pollutant Loads (LUHPPLS) (see RICR 8.14.C)	Activities: Sector:
		Construction is proposed on a site that is subject to THE MULTI-SECTOR GENERAL PERMIT (MSGP) UNDER RULE 31(B)15 OF THE RIPDES REGULATIONS.	MSGP permit \#
		\square Additional stormwater treatment is required by the MSGP Explain:	

REDEVELOPMENT STANDARD - MINIMUM STANDARD 6		
\triangle Pre Construction Impervious Area		
3.08 ac	\triangle Total Pre-Construction Impervious Area (TIA)	
4.62 ac	\boxtimes Total Site Area (TSA)	
\square Jurisdictional Wetlands (JW)		
\square Conservation Land (CL)		
\square Calculate the Site Size (defined as contiguous properties under same ownership)		
4.62 ac	\boxtimes Site Size $(\mathbf{S S})=(\mathbf{T S A})-(\mathbf{J W})-(\mathbf{C L})$	
0.67	$\boxtimes($ TIA $) /($ SS $)=$	区 (TIA) / (SS) $>\mathbf{0 . 4}$?
区 YES, Redevelopment		

PART 3. SUMMARY OF REMAINING STANDARDS

GROUNDWATER RECHARGE - MINIMUM STANDARD 2		
YES	NO	
\boxtimes	\square	The project has been designed to meet the groundwater recharge standard.
\square	\square	If "No," the justification for groundwater recharge criterion waiver has been explained in the Narrative (e.g., threat of groundwater contamination or physical limitation), if applicable (see RICR 8.8.D);
\square	\square	Your waiver request has been explained in the Narrative, if applicable.
\boxtimes	\square	Is this site identified as a Regulated Facility in Part 1, Minimum Standard 8: LUHPPL Identification? If "Yes," has approval for infiltration by the OLRSMM Site Project Manager, per Part 1, Minimum Standard 8, been requested?
\boxtimes	\square	

TABLE 2-1: Summary of Recharge (see RISDISM Section 3.3.2)						
(Add or Subtract Rows as Necessary)						

Notes:

1. Only BMPs listed in RISDISM Table 3-5 "List of BMPs Acceptable for Recharge" may be used to meet the recharge
requirement.
2. Recharge requirement must be satisfied for each waterbody ID.
\boxtimes Indicate where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.): Recharge Calculations are included in Appendix C of the Stormwater Report.

WATER QUALITY－MINIMUM STANDARD 3		
YES	NO	
区	\square	Does this project meet or exceed the required water quality volume WQv（see RICR 8．9．E－I）？
区	\square	Is the proposed final impervious cover greater than 20% of the disturbed area（see RICR 8．9．E－I）？
\square	\square	If＂Yes，＂either the Modified Curve Number Method or the Split Pervious／Impervious method in Hydro－CAD was used to calculate WQv；or，
区	\square	If＂Yes，＂either TR－55 or TR－20 was used to calculate WQv；and，
\square	\square	If＂No，＂the project meets the minimum WQv of 0.2 watershed inches over the entire disturbed area．
\square	\square	Not Applicable
区	\square	Does this project meet or exceed the ability to treat required water quality flow WQf（see RICR 8．9．I．1－3）？
\square	区	Does this project propose an increase of impervious cover to a receiving water body with impairments？ If＂Yes，＂please indicate below the method that was used to address the water quality requirements of no further degradation to a low－quality water．
\square	区	RICR 8．36．A Pollutant Loading Analysis is needed and has been completed．
\square	区	The Water Quality Guidance Document（Water Quality Goals and Pollutant Loading Analysis Guidance for Discharges to Impaired Waters）has been followed as applicable．
区	\square	BMPs are proposed that are on the approved technology list．If＂Yes，＂please provide all required worksheets from the manufacturer．
\square	区	Additional pollutant－specific requirements and／or pollutant removal efficiencies are applicable to the site as the result of a TMDL，SAMP，or other watershed－specific requirements． If＂Yes，＂please describe：

TABLE 3－1：Summary of Water Quality（see RICR 8．9）					
Design Point and WB ID	Impervious area treated （sq ft）	Total WQ Required（cu ft）	LID Stormwater Credits （see RICR 8．18）	Water Quality Treatment Remaining （cu ft）	Water Quality Provided by BMPs （cu ft）
			WQv directed to a QPA（cu ft）		
DP－1：	49，498	4，125	0	4，125	4，489
TOTALS：	49，498	4，125	0	0	4，489

Notes：
1．Only BMPs listed in RICR 8.20 and 8.25 or the Approved Technologies List of BMPs is Acceptable for Water Quality treatment．
2．For each Design Point，the Water Quality Volume Standard must be met for each Waterbody ID．

\boxtimes \square	YES	This project has met the setback requirements for each BMP．		
\square	NO		\quad	If＂No，＂please explain：
:---				

| CONVEYANCE AND NATURAL CHANNEL PROTECTION (RICR 8.10) - MINIMUM STANDARD 4 | | |
| :---: | :---: | :--- | :--- |
| YES | NO | Is |
| \square | \boxtimes | Is this standard waived? If "Yes," please indicate one or more of the reasons below: |

TABLE 4-1: Summary of Channel Protection Volumes (see RICR 8.10)					
Design Point	Receiving Water Body Name	Coldwater Fishery? (Y/N)	Total CPv Required (cu ft)	Total CPv Provided (cu ft)	Average Release Rate Modeled in the $1-\mathrm{yr}$ storm (cfs)
DP-1:					
TOTALS:					
Note: The Channel Protection Volume Standard must be met in each waterbody ID.					
$\begin{array}{ll} \square & \text { YES } \\ \square & \text { NO } \end{array}$	The CPv is released at roughly a uniform rate over a 24 -hour duration (see examples of sizing calculations in Appendix D of the RISDISM).				
$\begin{array}{ll} \square & \text { YES } \\ \square & \text { NO } \end{array}$	Do additional design restrictions apply resulting from any discharge to cold-water fisheries; If "Yes," please indicate restrictions and solutions below.				
$\square \quad$ Indicate below where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.).					

OVERBANK FLOOD PROTECTION（RICR 8．11）AND OTHER POTENTIAL HIGH FLOWS－MINIMUM STANDARD 5					
YES	NO				
\square	\boxtimes	Is this standard waived？If yes，please indicate one or more of the reasons below：			
		\square	The project directs discharge to a large river（i．e．，4th－order stream or larger．See Appendix I for state－ wide list and map of stream orders），bodies of water＞50．0 acres in surface area（i．e．，lakes，ponds， reservoirs），or tidal waters． A Downstream Analysis（see RICR 8．11．D and E）indicates that peak discharge control would not be beneficial or would exacerbate peak flows in a downstream tributary of a particular site（e．g．，through coincident peaks）．		
\square	\boxtimes	Does the project flow to an MS4 system or subject to other stormwater requirements？ If＂Yes，＂indicate as follows：			
		\square	RIDOT Other（specify）：		

Note：The project could be approved by RIDEM but not meet RIDOT or Town standards．RIDOT＇s regulations indicate that post－ volumes must be less than pre－volumes for the 10 －yr storm at the design point entering the RIDOT system．If you have not already received approval for the discharge to an MS4，please explain below your strategy to comply with RIDEM and the MS4．

		Indicate below which model was used for your analysis． TR－55 TR－20 凹 HydroCAD Bentley／Haestad Intellisolve Other（Specify）：
YES	NO	
区	\square	Does the drainage design demonstrate that flows from the 100 －year storm event through a BMP will safely manage and convey the 100 －year storm？If＂No，＂please explain briefly below and reference where in the application further documentation can be found（i．e．，name of report／document，page numbers，appendices，etc．）：
\square	$\begin{aligned} & \boxtimes \\ & \square \\ & \square \end{aligned}$	Do off－site areas contribute to the sub－watersheds and design points？If＂Yes，＂ Are the areas modeled as＂present condition＂for both pre－and post－development analysis？ Are the off－site areas shown on the subwatershed maps？
区	\square	Does the drainage design confirm safe passage of the 100－year flow through the site for off－site runoff？
\square	区	Is a Downstream Analysis required（see RICR 8．11．E．1）？
区	\square	Calculate the following：
		\boxtimes Area of disturbance within the sub－watershed（areas） 2.38 acres
		\boxtimes Impervious cover（\％）78\％Proposed
\square	区	Is a dam breach analysis required（earthen embankments over six（6）feet in height，or a capacity of 15 acre－feet or more，and contributes to a significant or high hazard dam）？
区	\square	Does this project meet the overbank flood protection standard？

Table 5-1 Hydraulic Analysis Summary								
Subwatershed (Design Point)	1.2" Peak Flow (cfs) **		1-yr Peak Flow (cfs)		10-yr Peak Flow (cfs)		100-yr Peak Flow (cfs)	
	Pre (cfs)	Post (cfs)						
DP-1:	1.25	1.75	6.52	6.51	16.65	15.30	35.71	30.53
TOTALS:	1.25	1.75	6.52	6.51	16.65	15.30	35.71	30.53
Utilize modified curve number method or split pervious /impervious method in HydroCAD. Note: The hydraulic analysis must demonstrate no impact to each individual subwatershed DP unless each DP discharges to the same wetland or water resource.								
Indicate as follows where the pertinent calculations and/or information for the items above are provided						Name of report/document, page numbers, appendices, etc.		
Existing conditions analysis for each subwatershed, including curve numbers, times of concentration, runoff rates, volumes, and water surface elevations showing methodologies used and supporting calculations.						Stormwater Report Appendix B		
Proposed conditions analysis for each subwatershed, including curve numbers, times of concentration, runoff rates, volumes, water surface elevations, and routing showing the methodologies used and supporting calculations.						Stormwater Report Appendix B		
Final sizing calculations for structural stormwater BMPs, including contributing drainage area, storage, and outlet configuration.						Stormwater Report Appendix C		
Stage-storage, inflow and outflow hydrographs for storage facilities (e.g., detention, retention, or infiltration facilities).						Stormwater Report Appendix B/C		

Table 5-2 Summary of Best Management Practices

$\begin{gathered} \text { BMP } \\ \text { ID } \end{gathered}$	DP \#	BMP Type (e.g., bioretention, tree filter)	BMP Functions					$\begin{aligned} & \text { Bypass } \\ & \text { Type } \end{aligned}$	Horizontal Setback Criteria are met per RICR 8.21.B.10, 8.22.D.11, and 8.35.B. 4		
			Pre- Treatment (Y/N/ NA)	Re_{v}	$W_{\text {W }}$	$\begin{gathered} \mathrm{CP}_{\mathrm{v}} \\ (\mathrm{Y} / \mathrm{N} / \\ \mathrm{NA}) \end{gathered}$	Overbank Flood Reduction (Y/N/NA)	External (E) Internal (I) or NA	$\begin{aligned} & \text { Yes/ } \\ & \text { No } \end{aligned}$	Technical Justification (Design Report page number)	Distance Provided
1	1	Subsurface Infiltration System	Y	Y	Y	N/A	Y	I	Y		
		TOTALS:	Y	Y	Y	N/A	Y	I	Y		

Table 5.3 Summary of Soils to Evaluate Each BMP									
DP \#	$\begin{gathered} \text { BMP } \\ \text { ID } \end{gathered}$	BMP Type (e.g., bioretention, tree filter)	Soils Analysis for Each BMP						
			Test Pit ID\# and Ground Elevation		SHWT Elevation (ft)	Bottom of Practice Elevation* (ft)	Separation Distance Provided (ft)	Hydrologic Soil Group (A, B, C, D)	Exfiltration Rate Applied (in/hr)
			Primary	Secondary					
1	1	Infiltration Basin	PBA-6		44.7	56.6	11.9	A	2.14
		TOTALS:							
For underground infiltration systems (UICs) bottom equals bottom of stone, for surface infiltration basins bottom equals bottom of basin, for filters bottom equals interface of storage and top of filter layer									

LAND USES WITH HIGHER POTENTIAL POLLUTANTS LOADS (LUHPPLs) - MINIMUM STANDARD 8			
YES	NO	N/A	
\square	\square	\boxtimes	Describe any LUHPPLs identified in Part 1, Minimum Standard 8, Section 2. If not applicable, continue to Minimum Standard 9.
\square	\square	\square	Are these activities already covered under an MSGP? If "No," please explain if you have applied for an MSGP or intend to do so?
\square	\square	\square	List the specific BMPs that are proposed for this project that receive stormwater from LUHPPL drainage areas. These BMP types must be listed in RISDISM Table 3-3, "Acceptable BMPs for Use at LUHPPLs." Please list BMPs:
\square	\square	\square	Additional BMPs, or additional pretreatment BMP's if any, that meet RIPDES MSGP requirements; Please list BMPs:
			Indicate below where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.).

ILLICIT DISCHARGES - MINIMUM STANDARD 9

Illicit discharges are defined as unpermitted discharges to Waters of the State that do not consist entirely of stormwater or uncontaminated groundwater, except for certain discharges identified in the RIPDES Phase II Stormwater General Permit.

YES	NO	N/A	
\boxtimes	\square	\square	Have you checked for illicit discharges?
\square	\boxtimes	\square	Have any been found and/or corrected? If "Yes," please identify. To the best of our knowledge based on the information provided, there are no known illicit discharges.
\boxtimes	\square	\square	Does your report explain preventative measures that keep non-stormwater discharges out of the Waters of the State (during and after construction)?

| SOIL EROSION AND SEDIMENT CONTROL (SESC) - MINIMUM STANDARD 10 | | | |
| :---: | :---: | :---: | :--- | :--- |
| YES | NO | N/A | |
| \boxtimes | \square | \square | Have you included a Soil Erosion and Sediment Control Plan Set and/or Complete Construction Plan Set? |
| \boxtimes | \square | \square | Have you provided a separately-bound document based upon the SESC Template? If yes, proceed to
 Minimum Standard 11 (the following items can be assumed to be addressed). |

							If "No," include a document with your submittal that addresses the following elements of an SESC Plan:
\square	Soil Erosion and Sediment Control Plan Project Narrative, including a description of how the fifteen (15) Performance Criteria have been met:						
\square	Provide Natural Buffers and Maintain Existing Vegetation						
\square	Minimize Area of Disturbance						
\square	Minimize the Disturbance of Steep Slopes						
\square	Preserve Topsoil						
\square	Stabilize Soils						
\square	Protect Storm Drain Inlets						
\square	Protect Storm Drain Outlets						
\square	Establish Temporary Controls for the Protection of Post-Construction Stormwater Control Measures						
\square	Establish Perimeter Controls and Sediment Barriers						
\square	Divert or Manage Run-On from Up-Gradient Areas						
\square	Properly Design Constructed Stormwater Conveyance Channels						
\square	Retain Sediment On-Site						
\square	Control Temporary Increases in Stormwater Velocity, Volume, and Peak Flows						
\square	Apply Construction Activity Pollution Prevention Control Measures						
\square	Install, Inspect, and Maintain Control Measures and Take Corrective Actions						
\square	Qualified SESC Plan Preparer's Information and Certification						
\square	Operator's Information and Certification; if not known at the time of application, the Operator must lertify the SESC Plan upon selection and prior to initiating site activities						
	\square	Description of Control Measures, such as Temporary Sediment Trapping and Conveyance Practices, including design calculations and supporting documentation, as required					

STORMWATER MANAGEMENT SYSTEM OPERATION, MAINTENANCE, AND POLLUTION PREVENTION PLAN - MINIMUM STANDARDS 7 AND 9

Operation and Maintenance Section

YES	NO	
\boxtimes	\square	Have you minimized all sources of pollutant contact with stormwater runoff, to the maximum extent practicable?
\boxtimes	\square	Have you provided a separately-bound Operation and Maintenance Plan for the site and for all of the BMPs, and does it address each element of RICR 8.17 and RISDISM Appendix C and E?
\boxtimes	\square	Lawn, Garden, and Landscape Management meet the requirements of RISDISM Section G.7? If "No," why not?
\boxtimes	\square	Is the property owner or homeowner's association responsible for the stormwater maintenance of all BMP's? If "No," you must provide a legally binding and enforceable maintenance agreement (see RISDISM Appendix E, page 26) that identifies the entity that will be responsible for maintenance of the stormwater. Indicate where this agreement can be found in your report (i.e., name of report/document, page numbers, appendices, etc.).
\square	\boxtimes	Do you anticipate that you will need legal agreements related to the stormwater structures? (e.g. off-site easements, deed restrictions, covenants, or ELUR per the Remediation Regulations). If "Yes," have you obtained them? Or please explain your plan to obtain them:
\square	\boxtimes	Is stormwater being directed from public areas to private property? If "Yes,"" note the following: Note: This is not allowed unless a funding mechanism is in place to provide the finances for the long-term maintenance of the BMP and drainage, or a funding mechanism is demonstrated that can guarantee the long- term maintenance of a stormwater BMP by an individual homeowner.

Pollution Prevention Section		
\boxtimes	\square	Designated snow stockpile locations?
\boxtimes	\square	Trash racks to prevent floatables, trash, and debris from discharging to Waters of the State?
\boxtimes	\square	Asphalt-only based sealants?
\square	\boxtimes	Pet waste stations? (Note: If a receiving water has a bacterial impairment, and the project involves housing units, then this could be an important part of your pollution prevention plan).
\boxtimes	\square	Regular sweeping? Please describe:
\boxtimes	\square	De-icing specifications, in accordance with RISDISM Appendix G. (NOTE: If the groundwater is GAA, or this area contributes to a drinking water supply, then this could be an important part of your pollution prevention plan).
\square	\boxtimes	A prohibition of phosphate-based fertilizers? (Note: If the site discharges to a phosphorus impaired waterbody, then this could be an important part of your pollution prevention plan).

PART 4. SUBWATERSHED MAPPING AND SITE-PLAN DETAILS

Existing and Proposed Subwatershed Mapping (REQUIRED)				
YES	NO			
\boxtimes	\square	Existing and proposed drainage area delineations		
\boxtimes	\square	Locations of all streams and drainage swales		
\boxtimes	\square	Drainage flow paths, mapped according to the DEM Guidance for Preparation of Drainage Area Maps (included in RISDISM Appendix K)		
\boxtimes	\square	Complete drainage area boundaries; include off-site areas in both mapping and analyses, as applicable		
\boxtimes	\square	Logs of borings and/or test pit investigations along with supporting soils/geotechnical report		
\boxtimes	\square	Mapped seasonal high-water-table test pit locations		
\boxtimes	\square	Mapped locations of the site-specific borings and/or test pits and soils information from the test pits at the locations of the BMPs		
\boxtimes	\square	Mapped locations of the BMPs, with the BMPs consistently identified on the Site Construction Plans		
\square	\boxtimes	Mapped bedrock outcrops adjacent to any infiltration BMP		
\boxtimes	\square	Soils were logged by a:		
		\square		DEM-licensed Class IV soil evaluator
:---				
Name:				

Subwatershed and Impervious Area Summary					
Subwatershed (area to each design point)	First Receiving Water ID or MS4	Area Disturbed (acres)	Existing Impervious (acres)	Proposed Impervious (acres)	
DP-1:	RI0006017L-10	2.38	3.08	3.60	
TOTALS:	RI0006017L-10	2.38	3.08	3.60	

Site Construction Plans（Indicate that the following applicable specifications are provided）		
YES	NO	
区	\square	Existing and proposed plans（scale not greater than $1^{\prime \prime}=40^{\prime}$ ）with North arrow
区	\square	Existing and proposed site topography（with 1 or 2－foot contours）；10－foot contours accepted for off－site areas
区	\square	Boundaries of existing predominant vegetation and proposed limits of clearing
®	\square	Site Location clarification
区	\square	Location and field－verified boundaries of resource protection areas such as： －freshwater and coastal wetlands，including lakes and ponds －coastal shoreline features Perennial and intermittent streams，in addition to Areas Subject to Storm Flowage（ASSFs）
区	\square	All required setbacks（e．g．，buffers，water－supply wells，septic systems）
区	\square	Representative cross－section and profile drawings，and notes and details of structural stormwater management practices and conveyances（i．e．，storm drains，open channels，swales，etc．），which include： －Location and size of the stormwater treatment practices（type of practice，depth，area）．Stormwater treatment practices（BMPs）must have labels that correspond to RISDISM Table 5－2； －Design water surface elevations（applicable storms）； －Structural details of outlet structures，embankments，spillways，stilling basins，grade－control structures， conveyance channels，etc．； －Existing and proposed structural elevations（e．g．，inverts of pipes，manholes，etc．）； －Location of floodplain and，if applicable，floodway limits and relationship of site to upstream and downstream properties or drainage that could be affected by work in the floodplain； －Planting plans for structural stormwater BMPs，including species，size，planting methods，and maintenance requirements of proposed planting
『	\square	Logs of borings and／or test pit investigations along with supporting soils／geotechnical report and corresponding water tables
\square	区	Mapping of any OLRSMM－approved remedial actions／systems（including ELURs）
区	\square	Location of existing and proposed roads，buildings，and other structures including limits of disturbance； －Existing and proposed utilities（e．g．，water，sewer，gas，electric）and easements； －Location of existing and proposed conveyance systems，such as grass channels，swales，and storm drains， and location（s）of final discharge point（s）（wetland，waterbody，etc．）； －Cross sections of roadways，with edge details such as curbs and sidewalks； －Location and dimensions of channel modifications，such as bridge or culvert crossings
\square	区	Locations，cross sections，and profiles of all stream or wetland crossings and their method of stabilization

APPENDIX B - HYDROLOGIC CALCULATIONS

- Existing Conditions Hydrologic Calculations
- Proposed Conditions Hydrologic Calculations

Existing Conditions

Prepared by Bryan Vachon - Green International Affiliates
Printed 5/3/2022
HydroCAD® 10.00-24 s/n 06415 © 2018 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
1.539	39	$>75 \%$ Grass cover, Good, HSG A (1A, 1B, 1C)
0.459	98	Existing Building Roof (1B)
3.145	98	Unconnected pavement, HSG A (1A, 1B, 1C)
$\mathbf{5 . 1 4 2}$	$\mathbf{8 0}$	TOTAL AREA

Existing Conditions

Prepared by Bryan Vachon - Green International Affiliates
Printed 5/3/2022
HydroCAD® 10.00-24 s/n 06415 © 2018 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
4.683	HSG A	1A, 1B, 1C
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.459	Other	1B
5.142		TOTAL AREA

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1441$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1A: EDA-1A (Untreated) Runoff Area=12,245 sf 37.88\% Impervious Runoff Depth=0.27" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff=$=0.04 \mathrm{cfs} 0.006$ af

Subcatchment 1B: EDA-1B (Treated by Runoff Area=151,624 sf 81.98% Impervious Runoff Depth $=1.50$ " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=5.99 \mathrm{cfs} 0.434$ af

Subcatchment 1C: EDA-1C (Treated by Runoff Area=60,132 sf 46.62% Impervious Runoff Depth $=0.45$ " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=67$ Runoff=$=0.52 \mathrm{cfs} 0.052$ af

Reach 1R: Existing Subsurface System

Reach 2R: Sedimentation Pond

Reach DP1: Tongue Pond

Inflow=5.99 cfs 0.434 af Outflow=5.99 cfs 0.434 af

Inflow=6.50 cfs 0.486 af Outflow $=6.50$ cfs 0.486 af

Inflow=6.52 cfs 0.492 af Outflow=6.52 cfs 0.492 af

Total Runoff Area $=5.142$ ac Runoff Volume $=0.492$ af Average Runoff Depth $=1.15$ " 29.93% Pervious $=1.539$ ac 70.07% Impervious $=3.603$ ac

Summary for Subcatchment 1A: EDA-1A (Untreated)

Runoff $=0.04$ cfs @ 12.27 hrs, Volume $=0.006$ af, Depth= $0.27{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.72"

	Area (sf)	CN	Description		
	$\begin{aligned} & 4,638 \\ & 7,607 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{array}{r} \hline 12,245 \\ 7,607 \\ 4,638 \\ 4,638 \end{array}$	61	Weighted Average 62.12\% Pervious Area 37.88\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
6.0					Direct Entry

Summary for Subcatchment 1B: EDA-1B (Treated by Subsurface System)

Runoff $=5.99$ cfs @ 12.09 hrs, Volume $=0.434$ af, Depth= 1.50
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.72"

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | |
| :--- |
| 6.0 |

Summary for Subcatchment 1C: EDA-1C (Treated by Sedimentation Pond)

Runoff $=0.52$ cfs @ 12.12 hrs, Volume $=0.052$ af, Depth= $0.45{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.72"

	Area (sf)	CN	Description		
	$\begin{aligned} & 28,032 \\ & 32,100 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{aligned} & \hline 60,132 \\ & 32,100 \\ & 28,032 \\ & 28,032 \end{aligned}$	67	Weighted Average 53.38\% Pervious Area 46.62\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
6.0					Direct Entry

Summary for Reach 1R: Existing Subsurface System

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	$3.481 \mathrm{ac}, 81.98 \%$	Impervious, Inflow Depth $=1.50 "$ for $1-$ Year event
Inflow	$=$	$5.99 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume
Outflow	$=$	$5.99 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Sedimentation Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	$4.861 \mathrm{ac}, 71.94 \%$	Impervious, Inflow Depth $=1.20 "$	for $1-$ Year event
Inflow	$=$	$6.50 \mathrm{cfs} @$	12.10 hrs, Volume $=$
Outflow	$=$	$6.50 \mathrm{cfs} @$	12.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach DP1: Tongue Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1441$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1A: EDA-1A (Untreated) Runoff Area=12,245 sf 37.88\% Impervious Runoff Depth $=0.49$ " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.10 \mathrm{cfs} 0.011$ af

Subcatchment 1B: EDA-1B (Treated by Runoff Area=151,624 sf 81.98% Impervious Runoff Depth $=2.00$ " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=7.99 \mathrm{cfs} 0.581$ af

Subcatchment 1C: EDA-1C (Treated by

Reach 1R: Existing Subsurface System

Reach 2R: Sedimentation Pond

Reach DP1: Tongue Pond

Inflow=7.99 cfs 0.581 af Outflow=7.99 cfs 0.581 af

Inflow=8.98 cfs 0.666 af Outflow=8.98 cfs 0.666 af

Inflow=9.08 cfs 0.678 af Outflow=9.08 cfs 0.678 af

Total Runoff Area $=5.142$ ac Runoff Volume $=0.678$ af Average Runoff Depth $=1.58$ " 29.93% Pervious $=1.539$ ac 70.07% Impervious $=3.603$ ac

Summary for Subcatchment 1A: EDA-1A (Untreated)

Runoff $=0.10$ cfs @ 12.12 hrs, Volume $=0.011$ af, Depth= $0.49{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.30"

	Area (sf)	CN	Description		
	$\begin{aligned} & 4,638 \\ & 7,607 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{array}{r} \hline 12,245 \\ 7,607 \\ 4,638 \\ 4,638 \end{array}$	61	Weighted Average 62.12\% Pervious Area 37.88\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
6.0					Direct Entry

Summary for Subcatchment 1B: EDA-1B (Treated by Subsurface System)

Runoff $=7.99$ cfs @ 12.09 hrs, Volume $=0.581$ af, Depth= 2.00"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.30"

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | |
| :--- |
| 6.0 |

Summary for Subcatchment 1C: EDA-1C (Treated by Sedimentation Pond)

Runoff $=\quad 1.01$ cfs @ 12.11 hrs, Volume $=\quad 0.085$ af, Depth= $0.74^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.30"

Area (sf)	CN	Description		
28,032	98	Unconnected pavement, HSG A		
32,100	39	$>75 \%$ Grass cover, Good, HSG A		
60,132	67	Weighted Average		
32,100		53.38% Pervious Area		
28,032		46.62% Impervious Area		
28,032	100.00% Unconnected			
Tc	Length	Slope		
Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)		
6.0	(ft/sec)	(cfs)		

Summary for Reach 1R: Existing Subsurface System

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	$3.481 \mathrm{ac}, 81.98 \%$	Impervious, Inflow Depth $=2.00 "$ for $2-$ Year event	
Inflow	$=$	$7.99 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$	0.581 af
Outflow	$=$	$7.99 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$	0.581 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Sedimentation Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	$4.861 \mathrm{ac}, 71.94 \%$ Impervious, Inflow Depth $=1.64 "$ for $2-$ Year event	
Inflow	$=$	$8.98 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$
Outflow	$=$	$8.98 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach DP1: Tongue Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 1A: EDA-1A (Untreated)

Runoff $=0.38$ cfs @ 12.10 hrs , Volume= 0.031 af, Depth= $1.31^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.90"

	Area (sf)	CN	Description		
	$\begin{aligned} & 4,638 \\ & 7,607 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{array}{r} \hline 12,245 \\ 7,607 \\ 4,638 \\ 4,638 \end{array}$	61	Weighted Average 62.12\% Pervious Area 37.88\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
6.0					Direct Entry

Summary for Subcatchment 1B: EDA-1B (Treated by Subsurface System)

Runoff $=13.63$ cfs @ 12.09 hrs, Volume= 1.007 af, Depth= 3.47"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-Year Rainfall=4.90"

Area (sf)	CN	Description
104,306	98	Unconnected pavement, HSG A
27,328	39	$>75 \%$ Grass cover, Good, HSG A
19,990	98	Existing Building Roof
151,624	87	Weighted Average
27,328		18.02\% Pervious Area
124,296		81.98% Impervious Area
104,306		83.92% Unconnected

Tc	Length (min)	Slope (feet)	Velocity $(\mathrm{ft} / \mathrm{ft})$		
$(\mathrm{ft} / \mathrm{sec})$					Capacity
---:					
(cfs)	\quad Description				
:---					

6.0

Direct Entry,

Summary for Subcatchment 1C: EDA-1C (Treated by Sedimentation Pond)

Runoff = 2.66 cfs @ 12.10 hrs, Volume= 0.199 af, Depth= $1.73^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.90"

Summary for Reach 1R: Existing Subsurface System

[40] Hint: Not Described (Outflow=Inflow)
Inflow Area $=3.481$ ac, 81.98% Impervious, Inflow Depth $=3.47$ " for 10-Year event Inflow = 13.63 cfs @ 12.09 hrs , Volume= 1.007 af Outflow = $13.63 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=1.007 \mathrm{af}$, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Sedimentation Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	4.861 ac,	71.94%	Impervious, Inflow Depth $=2.98 "$
Inflow	$=$	$16.27 \mathrm{cfs} @$	12.09 hrs, Volume $=$
Outflow	$=$	$16.27 \mathrm{cfs} @$	12.09 hrs, Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach DP1: Tongue Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Existing Conditions	Type III 24-hr 25-Year Rainfall=6.10"
Prepared by Bryan Vachon - Green Inter	rnational Affiliates Printed 5/3/2022
HydroCAD® 10.00-24 s/n 06415 © 2018 HydroCAD Software Solutions LLC Page 13	
Time span= $0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1441$ points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method	
Subcatchment 1A: EDA-1A (Untreated)	Runoff Area=12,245 sf 37.88% Impervious Runoff Depth=2.07" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff=$=0.64 \mathrm{cfs} 0.049 \mathrm{af}$
Subcatchment 1B: EDA-1B (Treated by	Runoff Area=151,624 sf 81.98% Impervious Runoff Depth=4.61" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=17.86 \mathrm{cfs} 1.338 \mathrm{af}$
Subcatchment 1C: EDA-1C (Treated by	Runoff Area=60,132 sf 46.62% Impervious Runoff Depth=2.61" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=67$ Runoff= 4.09 cfs 0.300 af
Reach 1R: Existing Subsurface System	$\begin{aligned} & \text { Inflow }=17.86 \text { cfs } \quad 1.338 \text { af } \\ & \text { Outflow }=17.86 \text { cfs } \quad 1.338 \text { af } \end{aligned}$
Reach 2R: Sedimentation Pond	Inflow=21.94 cfs 1.638 af Outflow=21.94 cfs 1.638 af
Reach DP1: Tongue Pond	$\begin{aligned} & \text { Inflow=22.58 cfs } \quad 1.686 \text { af } \\ & \text { Outflow }=22.58 \text { cfs } 1.686 \text { af } \end{aligned}$
Total Runoff Area = 5.142	ac Runoff Volume $=1.686$ af Average Runoff Depth $=3.94$ " 29.93% Pervious $=1.539$ ac 70.07% Impervious $=3.603$ ac

Summary for Subcatchment 1A: EDA-1A (Untreated)

Runoff $=0.64$ cfs @ 12.10 hrs, Volume= 0.049 af, Depth= 2.07"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 -Year Rainfall=6.10"

	Area (sf)	CN D	Description		
	4,638	98 U	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	7,607	$39>$			
	12,245	$61 \begin{array}{r}1 \\ \\ \\ \\ \\ \\ \end{array}$	Weighted Average 62.12\% Pervious Area 37.88\% Impervious Area 100.00\% Unconnected		
	7,607				
	4,638				
	4,638				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { cength } \\ \text { (feet) } \\ \hline \end{array}$	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	$\begin{array}{r} \text { Velocity } \\ \text { (ft/sec) } \\ \hline \end{array}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 1B: EDA-1B (Treated by Subsurface System)

Runoff $=17.86$ cfs @ 12.09 hrs, Volume= 1.338 af, Depth= 4.61"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 -Year Rainfall=6.10"

Area (sf)	CN	Description
104,306	98	Unconnected pavement, HSG A
* 27,328	39	$>75 \%$ Grass cover, Good, HSG A
19,990	98	Existing Building Roof
151,624	87	Weighted Average
27,328		18.02\% Pervious Area
124,296		81.98% Impervious Area
104,306		83.92% Unconnected

Tc	Length (min)	Slope (feet)	Velocity $(\mathrm{ft} / \mathrm{ft})$		
$(\mathrm{ft} / \mathrm{sec})$					Capacity
---:					
(cfs)	\quad Description \quad.				

6.0

Direct Entry,

Summary for Subcatchment 1C: EDA-1C (Treated by Sedimentation Pond)

Runoff $=\quad 4.09$ cfs @ 12.10 hrs, Volume= 0.300 af, Depth= 2.61"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.10"

	Area (sf)	CN D	Description		
	$\begin{aligned} & \hline 28,032 \\ & 32,100 \end{aligned}$	$\begin{array}{ll} \hline 98 & u \\ 39 & > \end{array}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{aligned} & \hline 60,132 \\ & 32,100 \\ & 28,032 \\ & 28,032 \end{aligned}$	67	Weighted Average 53.38\% Pervious Area 46.62\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	$\begin{array}{r} \begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array} \end{array}$	Description
6.0					Direct Entry

Summary for Reach 1R: Existing Subsurface System

[40] Hint: Not Described (Outflow=Inflow)
Inflow Area $=\quad 3.481$ ac, 81.98% Impervious, Inflow Depth $=4.61$ " for $25-$ Year event Inflow $=17.86$ cfs @ 12.09 hrs , Volume= 1.338 af Outflow = $17.86 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=1.338 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Sedimentation Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach DP1: Tongue Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Type III 24-hr 100-Year Rainfall=8.70"	
Prepared by Bryan Vachon - Green International Affiliates Printed 5/3/2022	
HydroCAD® 10.00-24 s/n 06415 © 2018 Hyd	roCAD Software Solutions LLC Page 16
Time span= $0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1441$ points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method	
Subcatchment 1A: EDA-1A (Untreated)	Runoff Area=12,245 sf 37.88% Impervious Runoff Depth=3.99" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff=1.28 cfs 0.093 af
Subcatchment 1B: EDA-1B (Treated by	Runoff Area=151,624 sf 81.98% Impervious Runoff Depth=7.13" Tc=6.0 min CN=87 Runoff=26.97 cfs 2.069 af
Subcatchment 1C: EDA-1C (Treated by	Runoff Area $=60,132$ sf 46.62% Impervious Runoff Depth=4.71" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=67$ Runoff=7.47 cfs 0.542 af
Reach 1R: Existing Subsurface System	$\begin{aligned} & \text { Inflow }=26.97 \text { cfs } 2.069 \text { af } \\ & \text { Outflow }=26.97 \text { cfs } 2.069 \text { af } \end{aligned}$
Reach 2R: Sedimentation Pond	Inflow=34.44 cfs 2.611 af Outflow=34.44 cfs 2.611 af
Reach DP1: Tongue Pond	$\begin{aligned} & \text { Inflow=35.71 cfs } 2.704 \text { af } \\ & \text { Outflow }=35.71 \mathrm{cfs} 2.704 \mathrm{af} \end{aligned}$
Total Runoff Area $=5.142$ ac Runoff Volume $=2.704$ af Average Runoff Depth $=6.31$ " 29.93% Pervious $=1.539$ ac 70.07% Impervious $=3.603$ ac	

Summary for Subcatchment 1A: EDA-1A (Untreated)

Runoff $=1.28$ cfs @ 12.10 hrs , Volume= 0.093 af, Depth= 3.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.70"

	Area (sf)	CN D	Description		
	4,638	98 U	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	7,607	$39>$			
	12,245	$61 \begin{array}{r}1 \\ \\ \\ \\ \\ \\ \end{array}$	Weighted Average 62.12\% Pervious Area 37.88\% Impervious Area 100.00\% Unconnected		
	7,607				
	4,638				
	4,638				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { cength } \\ \text { (feet) } \\ \hline \end{array}$	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	$\begin{array}{r} \text { Velocity } \\ \text { (ft/sec) } \\ \hline \end{array}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 1B: EDA-1B (Treated by Subsurface System)

Runoff $=\quad 26.97$ cfs @ 12.09 hrs, Volume= 2.069 af, Depth= 7.13"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Type III 24-hr 100-Year Rainfall=8.70"

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
(\min)	(feet)	(ft/ft)	(ft/sec)		

6.0

Direct Entry,

Summary for Subcatchment 1C: EDA-1C (Treated by Sedimentation Pond)

Runoff $=7.47$ cfs @ 12.09 hrs, Volume $=\quad 0.542$ af, Depth= 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.70"

	Area (sf)	CN D	Description		
	$\begin{aligned} & \hline 28,032 \\ & 32,100 \end{aligned}$	$\begin{array}{ll} \hline 98 & u \\ 39 & > \end{array}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{aligned} & \hline 60,132 \\ & 32,100 \\ & 28,032 \\ & 28,032 \end{aligned}$	67	Weighted Average 53.38\% Pervious Area 46.62\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	$\begin{array}{r} \begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array} \end{array}$	Description
6.0					Direct Entry

Summary for Reach 1R: Existing Subsurface System

[40] Hint: Not Described (Outflow=Inflow)
Inflow Area = $\quad 3.481$ ac, 81.98% Impervious, Inflow Depth $=7.13$ " for 100 -Year event Inflow = 26.97 cfs @ 12.09 hrs , Volume= 2.069 af Outflow = 26.97 cfs @ 12.09 hrs , Volume $=2.069 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Sedimentation Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach DP1: Tongue Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Proposed Conditions

Prepared by Bryan Vachon - Green International Affiliates
HydroCAD® 10.00-24 s/n 06415 © 2018 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
1.024	39	$>75 \%$ Grass cover, Good, HSG A (1A, 1B, 1C, 1D)
2.876	98	Paved parking, HSG A (1B, 1C)
1.243	98	Unconnected pavement, HSG A (1A, 1D)
$\mathbf{5 . 1 4 3}$	$\mathbf{8 6}$	TOTAL AREA

Proposed Conditions

Prepared by Bryan Vachon - Green International Affiliates
HydroCAD® 10.00-24 s/n 06415 © 2018 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
5.143	HSG A	1A, 1B, 1C, 1D
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
5.143		TOTAL AREA

Proposed Conditions

Prepared by Bryan Vachon - Green International Affiliates Printed 5/3/2022
HydroCAD® 10.00-24 s/n 06415 © 2018 HydroCAD Software Solutions LLC

Pipe Listing (all nodes)

Line\#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	10 P	57.58	55.28	393.0	0.0059	0.013	15.0	0.0	0.0

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1441$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1A: PDA-1A (Untreated) Runoff Area=12,245 sf 37.88\% Impervious Runoff Depth=0.27" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff=$=0.04 \mathrm{cfs} 0.006$ af

Subcatchment 1B: PDA-1B (Existing Runoff Area=117,174 sf 90.41% Impervious Runoff Depth=1.90" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=92$ Runoff=5.77 cfs 0.425 af

Subcatchment 1C: PDA-1C (Sedimentation Runoff Area=28,470 sf 67.97\% Impervious Runoff Depth=0.99" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=79$ Runoff=$=0.72 \mathrm{cfs} 0.054$ af

Subcatchment 1D: PDA-1D (Proposed Runoff Area=66,138 sf 74.84\% Impervious Runoff Depth=1.22" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=83$ Runoff=$=2.12 \mathrm{cfs} 0.155$ af

Reach 1R: Existing Subsurface System Inflow=5.77 cfs 0.425 af Outflow=5.77 cfs 0.425 af

Reach 2R: Sedimentation Pond

Reach DP-1: Tongue Pond
Inflow=6.49 cfs 0.531 af
Outflow=6.49 cfs 0.531 af
Inflow=6.51 cfs 0.537 af
Outflow=6.51 cfs 0.537 af
Pond 10P: Subsurface Infiltration System Peak Elev=58.11' Storage=4,727 cf Inflow=2.12 cfs 0.155 af Outflow=0.12 cfs 0.052 af
19.91\% Pervious = 1.024 ac 80.09% Impervious $=4.119$ ac

Summary for Subcatchment 1A: PDA-1A (Untreated)

Runoff $=0.04$ cfs @ 12.27 hrs, Volume $=0.006$ af, Depth= $0.27{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.72"

	Area (sf)	CN	Description		
	$\begin{aligned} & 4,638 \\ & 7,607 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{array}{r} \hline 12,245 \\ 7,607 \\ 4,638 \\ 4,638 \end{array}$	61	Weighted Average 62.12\% Pervious Area 37.88\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
6.0					Direct Entry

Summary for Subcatchment 1B: PDA-1B (Existing Subsurface System)

Runoff $=5.77$ cfs @ 12.09 hrs, Volume $=0.425$ af, Depth= 1.90"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.72"

Summary for Subcatchment 1C: PDA-1C (Sedimentation Pond)

Runoff = 0.72 cfs @ 12.10 hrs , Volume= 0.054 af, Depth= $0.99{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.72"

Area (sf)	CN	Description
19,351	98	Paved parking, HSG A
9,119	39	$>75 \%$ Grass cover, Good, HSG A
28,470	79	Weighted Average
9,119		32.03% Pervious Area
19,351		67.97% Impervious Area

	Area (sf)	CN	Description		
	$\begin{aligned} & 49,498 \\ & 16,640 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{aligned} & \hline 66,138 \\ & 16,640 \\ & 49,498 \\ & 49,498 \end{aligned}$	83	Weighted 25.16\% Pe 74.84\% Im 100.00\% U	verage vious Area pervious Area nconnected	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

Summary for Reach 1R: Existing Subsurface System

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	$2.690 \mathrm{ac}, 90.41 \%$ Impervious, Inflow Depth $=1.90$ "	for $1-$ Year event	
Inflow	$=$	$5.77 \mathrm{cfs} @$	12.09 hrs, Volume
Outflow	$=$	$5.77 \mathrm{cfs} @$	12.09 hrs, Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Sedimentation Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	$4.862 \mathrm{ac}, 82.53 \%$ Impervious, Inflow Depth $=1.31 "$ for $1-$ Year event		
Inflow	$=$	$6.49 \mathrm{cfs} @$	12.09 hrs, Volume $=$
Outflow	$=$	$6.49 \mathrm{cfs} @ 12.09$ hrs, Volume $=$	0.531 af

Routing by Stor-Ind+Trans method, Time Span= $0.00-72.00 \mathrm{hrs}$, dt= 0.05 hrs

Summary for Reach DP-1: Tongue Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond 10P: Subsurface Infiltration System

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 58.11' @ 14.98 hrs Surf.Area= 6,534 sf Storage= 4,727 cf
Plug-Flow detention time $=380.7$ min calculated for 0.052 af (33% of inflow)
Center-of-Mass det. time $=250.5 \mathrm{~min}(1,091.4-840.9)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	$56.58{ }^{\prime}$	5,332 cf	$63.25{ }^{\prime} \mathrm{W} \times 103.30^{\prime} \mathrm{L} \mathrm{x} \mathrm{4.00'H} \mathrm{Field} \mathrm{A}$
			26,134 cf Overall - 8,361 cf Embedded $=17,773$ cf $\times 30.0 \%$ Voids
\#2A	57.58'	8,361 cf	ADS_StormTech SC-740 +Cap $\times 182$ Inside \#1
			Effective Size= 44.6"W $\times 30.0$ "H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0$ "W x 30.0"H $\times 7.56^{\prime} \mathrm{L}$ with $0.44{ }^{\prime}$ ' Overlap
			182 Chambers in 13 Rows

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	57.58'	15.0" Round Culvert
			$\mathrm{L}=393.0^{\prime}$ RCP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 57.58' / 55.28' S=0.0059 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 1.23 sf
\#2	Device 1	58.06'	3.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height

Primary OutFlow Max=0.11 cfs @ 14.98 hrs HW=58.11' (Free Discharge)
\&1=Culvert (Passes 0.11 cfs of 1.04 cfs potential flow)
2 ${\text {=Sharp-Crested Rectangular Weir }}$ (Weir Controls 0.11 cfs @ 0.71 fps)

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1441$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1A: PDA-1A (Untreated) Runoff Area=12,245 sf 37.88\% Impervious Runoff Depth=0.49" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff=$=0.10 \mathrm{cfs} 0.011 \mathrm{af}$

Subcatchment 1B: PDA-1B (Existing Runoff Area=117,174 sf 90.41% Impervious Runoff Depth=2.45" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=92$ Runoff=7.35 cfs 0.548 af

Subcatchment 1C: PDA-1C (Sedimentation Runoff Area=28,470 sf 67.97\% Impervious Runoff Depth=1.41" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=79$ Runoff=1.05 cfs 0.077 af

Subcatchment 1D: PDA-1D (Proposed Runoff Area=66,138 sf 74.84\% Impervious Runoff Depth=1.69" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=83$ Runoff=$=2.95 \mathrm{cfs} 0.214$ af

Reach 1R: Existing Subsurface System Inflow=7.35 cfs 0.548 af Outflow=7.35 cfs 0.548 af

Reach 2R: Sedimentation Pond

Reach DP-1: Tongue Pond
Inflow=8.40 cfs 0.736 af Outflow=8.40 cfs 0.736 af

Inflow=8.50 cfs 0.748 af Outflow=8.50 cfs 0.748 af

Pond 10P: Subsurface Infiltration System Peak Elev=58.16' Storage=4,996 cf Inflow=2.95 cfs 0.214 af Outflow=0.36 cfs 0.111 af
19.91% Pervious $=1.024$ ac
80.09\% Impervious = 4.119 ac

Summary for Subcatchment 1A: PDA-1A (Untreated)

Runoff $=0.10$ cfs @ 12.12 hrs, Volume $=0.011$ af, Depth= $0.49{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.30"

	Area (sf)	CN	Description		
	$\begin{aligned} & 4,638 \\ & 7,607 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{array}{r} \hline 12,245 \\ 7,607 \\ 4,638 \\ 4,638 \end{array}$	61	Weighted Average 62.12\% Pervious Area 37.88\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
6.0					Direct Entry

Summary for Subcatchment 1B: PDA-1B (Existing Subsurface System)

Runoff $=7.35$ cfs @ 12.09 hrs, Volume $=0.548$ af, Depth= $2.45{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.30"

Area (sf)	CN	Description
105,939	98	Paved parking, HSG A
11,235	39	$>75 \%$ Grass cover, Good, HSG A
117,174	92	Weighted Average
11,235		9.59% Pervious Area
105,939		90.41% Impervious Area

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment 1C: PDA-1C (Sedimentation Pond)

Runoff $=1.05$ cfs @ 12.10 hrs , Volume= 0.077 af, Depth= $1.41{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.30"

Area (sf)	CN	Description
19,351	98	Paved parking, HSG A
9,119	39	$>75 \%$ Grass cover, Good, HSG A
28,470	79	Weighted Average
9,119		32.03% Pervious Area
19,351		67.97% Impervious Area

Summary for Reach 1R: Existing Subsurface System

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	$2.690 \mathrm{ac}, 90.41 \%$	Impervious, Inflow Depth $=2.45 "$	for $2-$ Year event	
Inflow	$=$	$7.35 \mathrm{cfs} @$	12.09 hrs, Volume $=$	0.548 af
Outflow	$=$	$7.35 \mathrm{cfs} @$	12.09 hrs , Volume $=$	0.548 af , Atten= $=0 \%$, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Sedimentation Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= $0.00-72.00 \mathrm{hrs}$, dt= 0.05 hrs

Summary for Reach DP-1: Tongue Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond 10P: Subsurface Infiltration System

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 58.16' @ 12.84 hrs Surf.Area= 6,534 sf Storage= 4,996 cf
Plug-Flow detention time $=260.4$ min calculated for 0.111 af (52% of inflow)
Center-of-Mass det. time $=143.2 \mathrm{~min}(974.7-831.5)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	$56.58{ }^{\prime}$	5,332 cf	$63.25{ }^{\prime} \mathrm{W} \times 103.30^{\prime} \mathrm{L} \mathrm{x} \mathrm{4.00'H} \mathrm{Field} \mathrm{A}$
			26,134 cf Overall - 8,361 cf Embedded $=17,773$ cf $\times 30.0 \%$ Voids
\#2A	57.58'	8,361 cf	ADS_StormTech SC-740 +Cap $\times 182$ Inside \#1
			Effective Size= 44.6"W $\times 30.0$ "H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0$ "W x 30.0"H $\times 7.56^{\prime} \mathrm{L}$ with $0.44{ }^{\prime}$ ' Overlap
			182 Chambers in 13 Rows

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	57.58'	15.0" Round Culvert
			$\mathrm{L}=393.0^{\prime}$ RCP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 57.58' / 55.28' S=0.0059'/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 1.23 sf
\#2	Device 1	58.06'	3.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height

Primary OutFlow Max=0.36 cfs @ 12.84 hrs HW=58.16' (Free Discharge)
\&1=Culvert (Passes 0.36 cfs of 1.25 cfs potential flow)
-2=Sharp-Crested Rectangular Weir (Weir Controls 0.36 cfs @ 1.05 fps)

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1441$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1A: PDA-1A (Untreated) Runoff Area=12,245 sf 37.88\% Impervious Runoff Depth=1.31" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff=$=0.38 \mathrm{cfs} 0.031 \mathrm{af}$

Subcatchment 1B: PDA-1B (Existing Runoff Area=117,174 sf 90.41% Impervious Runoff Depth=3.99" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=92$ Runoff=11.69 cfs 0.895 af

Subcatchment 1C: PDA-1C (Sedimentation Runoff Area=28,470 sf 67.97\% Impervious Runoff Depth=2.72" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=79$ Runoff $=2.04 \mathrm{cfs} 0.148$ af

Subcatchment 1D: PDA-1D (Proposed Runoff Area=66,138 sf 74.84\% Impervious Runoff Depth=3.08" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=83$ Runoff=5.35 cfs 0.390 af

Reach 1R: Existing Subsurface System

Reach 2R: Sedimentation Pond

Reach DP-1: Tongue Pond
Inflow=11.69 cfs 0.895 af Outflow=11.69 cfs 0.895 af

Inflow=14.92 cfs 1.330 af Outflow=14.92 cfs 1.330 af

Inflow=15.30 cfs 1.360 af Outflow=15.30 cfs 1.360 af

Pond 10P: Subsurface Infiltration System
Peak Elev=58.46' Storage=6,500 cf Inflow=5.35 cfs 0.390 af Outflow=2.61 cfs 0.287 af
19.91% Pervious $=1.024$ ac
80.09\% Impervious $=4.119$ ac

Summary for Subcatchment 1A: PDA-1A (Untreated)

Runoff $=0.38$ cfs @ 12.10 hrs , Volume= 0.031 af, Depth= $1.31^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.90"

	Area (sf)	CN	Description		
	$\begin{aligned} & 4,638 \\ & 7,607 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{array}{r} \hline 12,245 \\ 7,607 \\ 4,638 \\ 4,638 \end{array}$	61	Weighted Average 62.12\% Pervious Area 37.88\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
6.0					Direct Entry

Summary for Subcatchment 1B: PDA-1B (Existing Subsurface System)

Runoff $=11.69$ cfs @ 12.09 hrs, Volume $=0.895$ af, Depth= 3.99"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-Year Rainfall=4.90"

Area (sf)	CN	Description
105,939	98	Paved parking, HSG A
11,235	39	$>75 \%$ Grass cover, Good, HSG A
117,174	92	Weighted Average
11,235		9.59% Pervious Area
105,939		90.41% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 1C: PDA-1C (Sedimentation Pond)

Runoff $=\quad 2.04$ cfs @ 12.09 hrs, Volume $=0.148$ af, Depth= 2.72"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area (sf)	CN	Description
19,351	98	Paved parking, HSG A
9,119	39	$>75 \%$ Grass cover, Good, HSG A
28,470	79	Weighted Average
9,119		32.03% Pervious Area
19,351		67.97% Impervious Area

Summary for Reach 1R: Existing Subsurface System

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Sedimentation Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= $0.00-72.00 \mathrm{hrs}$, dt= 0.05 hrs

Summary for Reach DP-1: Tongue Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond 10P: Subsurface Infiltration System

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 58.46' @ 12.26 hrs Surf.Area= 6,534 sf Storage= 6,500 cf
Plug-Flow detention time $=161.8$ min calculated for 0.287 af (74% of inflow)
Center-of-Mass det. time $=72.0 \mathrm{~min}(886.3-814.3$)

Volume	Invert	Avail.Storage	Storage Description
\#1A	56.58'	5,332 cf	63.25'W x 103.30'L x 4.00'H Field A
			26,134 cf Overall - 8,361 cf Embedded $=17,773$ cf $\times 30.0 \%$ Voids
\#2A	57.58'	8,361 cf	ADS_StormTech SC-740 +Cap x 182 Inside \#1 Effective Size $=44.6^{\prime \prime} \mathrm{W} \times 30.0 \mathrm{H} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$ Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap 182 Chambers in 13 Rows
		13,693	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	57.58'	15.0" Round Culvert
			$\mathrm{L}=393.0^{\prime} \mathrm{RCP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 57.58' / 55.28' S=0.0059 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 1.23 sf
\#2	Device 1	58.06'	3.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=2.60 cfs @ 12.26 hrs HW=58.46' (Free Discharge)
\& $1=$ Culvert (Barrel Controls 2.60 cfs @ 3.97 fps)
-2=Sharp-Crested Rectangular Weir (Passes 2.60 cfs of 3.07 cfs potential flow)

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1441$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1A: PDA-1A (Untreated) Runoff Area=12,245 sf 37.88\% Impervious Runoff Depth=2.07" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.64 \mathrm{cfs} 0.049$ af

Subcatchment 1B: PDA-1B (Existing Runoff Area=117,174 sf 90.41% Impervious Runoff Depth=5.17" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=92$ Runoff=14.91 cfs 1.158 af

Subcatchment 1C: PDA-1C (Sedimentation Runoff Area=28,470 sf 67.97\% Impervious Runoff Depth=3.77" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=79$ Runoff $=2.82 \mathrm{cfs} 0.205$ af

Subcatchment 1D: PDA-1D (Proposed Runoff Area=66,138 sf 74.84\% Impervious Runoff Depth=4.18" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=83$ Runoff=7.20 cfs 0.529 af

Reach 1R: Existing Subsurface System

Reach 2R: Sedimentation Pond

Reach DP-1: Tongue Pond

Pond 10P: Subsurface Infiltration System
Peak Elev=58.75' Storage=7,907 cf Inflow=7.20 cfs 0.529 af Outflow=4.02 cfs 0.426 af
19.91% Pervious $=1.024$ ac
80.09\% Impervious = 4.119 ac

Summary for Subcatchment 1A: PDA-1A (Untreated)

Runoff $=0.64$ cfs @ 12.10 hrs, Volume $=0.049$ af, Depth= 2.07"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 -Year Rainfall=6.10"

	Area (sf)	CN	Description		
	$\begin{aligned} & 4,638 \\ & 7,607 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{array}{r} \hline 12,245 \\ 7,607 \\ 4,638 \\ 4,638 \end{array}$	61	Weighted Average 62.12\% Pervious Area 37.88\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
6.0					Direct Entry

Summary for Subcatchment 1B: PDA-1B (Existing Subsurface System)

Runoff $=14.91$ cfs @ 12.09 hrs, Volume= 1.158 af, Depth= 5.17"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Type III 24-hr 25-Year Rainfall=6.10"

Area (sf)	CN	Description
105,939	98	Paved parking, HSG A
11,235	39	$>75 \%$ Grass cover, Good, HSG A
117,174	92	Weighted Average
11,235		9.59% Pervious Area
105,939		90.41% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 1C: PDA-1C (Sedimentation Pond)

Runoff = 2.82 cfs @ 12.09 hrs, Volume= 0.205 af, Depth= 3.77"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.10"

Area (sf)	CN	Description
19,351	98	Paved parking, HSG A
9,119	39	$>75 \%$ Grass cover, Good, HSG A
28,470	79	Weighted Average
9,119		32.03% Pervious Area
19,351		67.97% Impervious Area

	Area (sf)	CN	Description		
	$\begin{aligned} & 49,498 \\ & 16,640 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{aligned} & \hline 66,138 \\ & 16,640 \\ & 49,498 \\ & 49,498 \end{aligned}$	83	Weighted 25.16\% Pe 74.84\% Im $100.00 \% \text { U }$	verage vious Area ervious Area nconnected	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

Summary for Reach 1R: Existing Subsurface System

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Sedimentation Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= $0.00-72.00 \mathrm{hrs}$, dt= 0.05 hrs

Summary for Reach DP-1: Tongue Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond 10P: Subsurface Infiltration System

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 58.75' @ 12.22 hrs Surf.Area= 6,534 sf Storage= 7,907 cf
Plug-Flow detention time $=134.5$ min calculated for 0.426 af (81% of inflow)
Center-of-Mass det. time $=59.2 \mathrm{~min}(864.8-805.6)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	56.58'	5,332 cf	63.25'W x 103.30'L x 4.00'H Field A
			26,134 cf Overall - 8,361 cf Embedded $=17,773$ cf $\times 30.0 \%$ Voids
\#2A	57.58'	8,361 cf	ADS_StormTech SC-740 +Cap x 182 Inside \#1 Effective Size $=44.6^{\prime \prime} \mathrm{W} \times 30.0 \mathrm{H} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$ Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap 182 Chambers in 13 Rows
		13,693	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	57.58'	15.0" Round Culvert
			$\mathrm{L}=393.0^{\prime}$ RCP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 57.58' / 55.28' S=0.0059 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 1.23 sf
\#2	Device 1	58.06'	3.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height

Primary OutFlow Max=3.99 cfs @ 12.22 hrs HW=58.75' (Free Discharge)
\&1=Culvert (Barrel Controls 3.99 cfs @ 4.35 fps)
-2=Sharp-Crested Rectangular Weir (Passes 3.99 cfs of 7.29 cfs potential flow)

Time span=0.00-72.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}, 1441$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1A: PDA-1A (Untreated) Runoff Area=12,245 sf 37.88\% Impervious Runoff Depth=3.99" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=1.28 \mathrm{cfs} 0.093$ af

Subcatchment 1B: PDA-1B (Existing Runoff Area=117,174 sf 90.41% Impervious Runoff Depth=7.74" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=92$ Runoff=21.81 cfs 1.734 af

Subcatchment 1C: PDA-1C (Sedimentation Runoff Area=28,470 sf 67.97% Impervious Runoff Depth=6.16" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=79$ Runoff $=4.54 \mathrm{cfs} 0.336$ af

Subcatchment 1D: PDA-1D (Proposed Runoff Area=66,138 sf 74.84\% Impervious Runoff Depth=6.65" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=83$ Runoff $=11.20 \mathrm{cfs} 0.841 \mathrm{af}$

Reach 1R: Existing Subsurface System

Reach 2R: Sedimentation Pond

Reach DP-1: Tongue Pond
Inflow=21.81 cfs 1.734 af Outflow=21.81 cfs 1.734 af

Inflow=31.39 cfs 2.808 af Outflow=31.39 cfs 2.808 af

Inflow=32.67 cfs 2.901 af Outflow=32.67 cfs 2.901 af

Pond 10P: Subsurface Infiltration System Peak Elev=59.44' Storage=10,847 cf Inflow=11.20 cfs 0.841 af Outflow=5.25 cfs 0.738 af

Total Runoff Area = 5.143 ac Runoff Volume = 3.005 af Average Runoff Depth $=7.01$ "
19.91% Pervious $=1.024$ ac
80.09\% Impervious = 4.119 ac

Summary for Subcatchment 1A: PDA-1A (Untreated)

Runoff $=1.28$ cfs @ 12.10 hrs, Volume= 0.093 af, Depth= 3.99"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.70"

	Area (sf)	CN	Description		
	$\begin{aligned} & 4,638 \\ & 7,607 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{array}{r} \hline 12,245 \\ 7,607 \\ 4,638 \\ 4,638 \end{array}$	61	Weighted Average 62.12\% Pervious Area 37.88\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
6.0					Direct Entry

Summary for Subcatchment 1B: PDA-1B (Existing Subsurface System)

Runoff = 21.81 cfs @ 12.09 hrs, Volume= 1.734 af, Depth= $7.74{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Type III 24-hr 100-Year Rainfall=8.70"

Area (sf)	CN	Description
105,939	98	Paved parking, HSG A
11,235	39	$>75 \%$ Grass cover, Good, HSG A
117,174	92	Weighted Average
11,235		9.59% Pervious Area
105,939		90.41% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 1C: PDA-1C (Sedimentation Pond)

Runoff $=\quad 4.54$ cfs @ 12.09 hrs, Volume= 0.336 af, Depth= 6.16"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area (sf)	CN	Description
19,351	98	Paved parking, HSG A
9,119	39	$>75 \%$ Grass cover, Good, HSG A
28,470	79	Weighted Average
9,119		32.03% Pervious Area
19,351		67.97% Impervious Area

	Area (sf)	CN	Description		
	$\begin{aligned} & 49,498 \\ & 16,640 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Unconnected pavement, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{aligned} & \hline 66,138 \\ & 16,640 \\ & 49,498 \\ & 49,498 \end{aligned}$	83	Weighted Average 25.16\% Pervious Area 74.84\% Impervious Area 100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Reach 1R: Existing Subsurface System

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Sedimentation Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= $0.00-72.00 \mathrm{hrs}$, dt= 0.05 hrs

Summary for Reach DP-1: Tongue Pond

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond 10P: Subsurface Infiltration System

Inflow Area $=$	1.518 ac,	74.84%	Impervious, Inflow Depth $=6.65 "$
Inflow	$=$	$11.20 \mathrm{cfs} @$	12.09 hrs, Volume $=$
Outflow	$=$	$5.25 \mathrm{cfs} @$	12.50 hrs , Volume $=$
Primary	$=$	$5.25 \mathrm{cfs} @$	12.50 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 59.44' @ 12.27 hrs Surf.Area=6,534 sf Storage= 10,847 cf
Plug-Flow detention time $=106.8$ min calculated for 0.738 af (88% of inflow)
Center-of-Mass det. time $=50.3 \mathrm{~min}(843.0-792.7)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	56.58'	5,332 cf	63.25'W x 103.30'L x 4.00'H Field A
			26,134 cf Overall - 8,361 cf Embedded $=17,773$ cf $\times 30.0 \%$ Voids
\#2A	57.58'	8,361 cf	ADS_StormTech SC-740 +Cap x 182 Inside \#1 Effective Size $=44.6^{\prime \prime} \mathrm{W} \times 30.0 \mathrm{H} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$ Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap 182 Chambers in 13 Rows
		13,693	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	57.58'	15.0" Round Culvert
			$\mathrm{L}=393.0^{\prime} \mathrm{RCP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 57.58' / 55.28' S=0.0059 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 1.23 sf
\#2	Device 1	58.06'	3.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=5.24 cfs @ 12.50 hrs HW=59.15' (Free Discharge)
\&1=Culvert (Barrel Controls 5.24 cfs @ 4.38 fps)
L2=Sharp-Crested Rectangular Weir (Passes 5.24 cfs of 15.38 cfs potential flow)

APPENDIX C - SIZING CRITERIA CALCULATIONS

- Water Quality Volume Calculation Worksheet
- Water Quality Volume Calculations
- Water Quality Flow Rate Calculations for Proprietary Devices
- TSS Calculations provided by Contech
- Recharge Volume Calculations
- Stage-Area Storage for Subsurface Infiltration System

Project Name

AF-Illuminar School	
Date $4 / 15 / 2022$	

Water Quality Volume Calculation WorkSheet

This worksheet is designed to assist the project engineer with a determination of the required water quality treatment area. The worksheet leads the designer through redevelopment applicability first and then receiving water requirements. This tool is intended to compliment to the Redevelopment Criteria Guidance and the Water Quality Guidance and assist both the designer and the permit application reviewer towards consistent results. Enter information into only the YELLOW Boxes.

Redevelopment Criteria Guidance

Water Quality Goals "Stormwater Compensation Method"

Step 1 - Determine which office in OWR you are applying to:	Application Guidance		
Step 2 - Site Information		value/calculation	units
Total Site Area (total area of project parcels)	TSA	4.62	acres
Total Jurisdictional Wetlands and/or floodplain within the above TSA	JW1=	0.00	acres
Existing impervious also within the Jurisdictonal Wetlands	-JW2=	0.00	acres
Conservation Land within the TSA	CL	0.00	acres
Site Size = (TSA)-(JW1-JW2)-CL	SS=	4.62	acres

Step 3-Redevelopment Applicability

| Total Impervious Area (pre-construction) \quad TIA $=$ | 3.08 | acres |
| :--- | :---: | :---: | :---: |
| \% Impervious (if $\geq 40 \%$ - redevelopment standard 3.2.6 applies) | $\mathbf{0 . 6 7}$ | |

REPEAT IF NECESSARY Steps 4,5 and 6 for EACH Waterbody ID (RIVER-ID as found in the GIS Map Server)
Step 4 -Receiving waterbody information

RI0006017L-10	
Waterbody Name from GIS Map Server	
Name the sub-watersheds (design-points) contributing to this Waterbody ID	
Is this Waterbody Impaired/TMDL for any Phosphorus, Metals or Bacteria?	NO
Is this Waterbody Impaired for Nitrogen?	NO

Step 5 - Pre-Post Construction Conditions to the Waterbody

Total Pre-Construction Impervious Surface to this Waterbody ID	3.08	acres
Total Disturbed Existing Impervious (DI)	1.01	acres
Total Post-Construction Impervious to this Waterbody ID	3.60	acres
Net Increased Impervious (NII)	0.52	acres

Step 6 - Infiltration and BMP information - Note: Increasing infiltration will likely
decrease stormwater treatment area for Metals, Bacteria and Phosporus

I am proposing to infiltrate this percentage WQv to this WBID	100%	$\%$
I am proposing this number of BMP's	1	$\#$

RESULTS - Select the Larger Number of the 2 numbers provided

Applicable Condition	Min Water Quality Treatment AreaMin Treatment w/o WQ consideration		
No Impairement or TMDL - New Development			
No Impairment or TMDL - Redevelopment	1.02	1.02	
Only Phosphorus, Metals or Bacteria Impairment - New Development			
Only Phosphorus, Metals or Bacteria Impairment - Redevelopment			
Nitrogen Impairment - New Development			
Nitrogen Impairment - Redevelopment		$\mathbf{1 . 0}$	
acres			

[^1]
WATER QUALITY CALCULATIONS

Date:
Revised:
Project: AF-Illuminar School Addition
Project No:
Location:
Prepared By: BV
Revised By:
Checked By:
DHS

Date: 4/14/2022
Date:
Date: 4/27/2022

Objective:
Methodology:
Design Criteria:
$W Q_{v}=[(1 ")(\mathrm{I})] / 12(\mathrm{ac}-\mathrm{ft})$
$\mathrm{I}=$ Impervious Area (acres)
Note: $\mathrm{WQ}_{\mathrm{v}(\text { min })}=0.2 "\left(\mathrm{~A}_{\text {disturbed }}\right) / 12$ (watershed inches)

Calculation

Results:

	Volume	Volume Provided $\left(\mathrm{ft}^{3}\right)$
Designation	Required $\left(\mathrm{ft}^{3}\right)$	$\mathbf{4 , 4 8 9}$
Drainage Area to Subsurface I	$\mathbf{4 , 1 2 5}$	

Volume to be
Treated: Drainage Area to Subsurface Infiltration System

$\mathrm{I}=$	1.14 ac	
$W \mathrm{~W}_{\mathrm{v}}$ Required $=$	$0.094693 \mathrm{ac}-\mathrm{ft}$	$\mathbf{4 , 1 2 5} \mathrm{ft}^{3}$

$\mathrm{A}($ disturbed $)=\quad 1.01 \mathrm{ac}$
Check $W_{Q_{v(\text { min })}}=\quad 0.016833$ ac-ft $\quad 733 \mathrm{ft}^{3}$ ok

Volume	Required Stormwater Treatment Area (impervious) $=$	1.02 ac
Provided:	Total Impervious area treated through BMPs =	$\mathbf{1 . 1 4} \mathbf{~ a c ~ o k ~}$

Drainage Area to Subsurface Infiltration System
Total Volume = 4,489 ft^{3}
(See "HydroCAD Storage Table" for volume provided in Appendix C)

WATER QUALITY FLOW RATE CALCULATIONS FOR PROPRIETARY DEVICES

Date:
April 27, 2022
Revised:
Project:
Project No:
Location:
Prepared By: BV
Checked By: DHS

Date: 4/14/2022
Date: 4/27/2022

Objective: \quad To determine the required Water Quality Flow $\left(\mathrm{WQ}_{\mathrm{F}}\right)$ for adequate stormwater treatment for proprietary treatment devices
Methodology: Rhode Island Stormwater Design and Installation Standards Manual using the CN method Design Criteria:
$C N=1000 /\left[10+5 P+10 Q-10\left(Q^{\wedge} 2+1.25 Q P\right)^{\wedge} 1 / 2\right]$
$P=1.2$ Rainfall, in inches
$W Q_{F}=q_{u}{ }^{*} A^{*} Q(a c-f t)$
$\mathrm{q}_{\mathrm{u}}=$ the unit peak discharge rate ($\mathrm{cfs} / \mathrm{mi}^{2} /$ inch
$A=$ drainage area $\left(\mathrm{mi}^{2}\right)$
$\mathrm{Q}=$ runoff volume $\left(W Q_{V} / \mathrm{A}\right.$, in inches)
$W Q_{v}=\left[\left(1^{\prime \prime}\right)(1)\right] / 12$ (ac-ft)
I = Impervious Area (acres)

Calculation

Results:

Designation	Flow Rate Required (cfs)	Flow Rate Provided (cfs)	
Drainage Area to WQS-1	0.33		0.33
Drainage Area to WQS-2	0.64		0.64

Volume to be

Treated:

Q=	1.14 inch	
$\mathrm{CN}=$	99	
$\mathrm{T}_{\mathrm{c}}=$	5.0 min	0.083333333 hr
$\mathrm{la}=$	0.01	
$\mathrm{la} / \mathrm{P}=$	0.01	
1 =	0.28 ac	
qu =	650.0 csm	(TR-55 Exhibit 4-III,
$W \mathrm{Q}_{\mathrm{v}}$ Required $=$	0.0237 ac-ft	1,032 ft ${ }^{\text {3 }}$
$\mathrm{A}=$	12,389 sf	$0.0004 \mathrm{mi}^{2}$
$\mathrm{Q}_{\text {peak }}=$	0.33 cfs	ok

Drainage Area to WQS-2	(CDS)	
$\mathrm{Q}=$	1.14 inches	
$\mathrm{CN}=$	99	
$\mathrm{~T}_{\mathrm{c}}=$	5.0 min	0.083333333 hr
$\mathrm{la}=$	0.01	
$\mathrm{la} / \mathrm{P}=$	0.01	
$\mathrm{l}=$	0.55 ac	
$\mathrm{qu}=$	$650.0 \mathrm{csm} / \mathrm{in}$ (TR-55 Exhibit 4-III, qu for NRCS Type III Storm Distribution)	
WQ_{v} Required $=$	$0.0458 \mathrm{ac}-\mathrm{ft}$	$\mathbf{1 , 9 9 7 \mathrm { ft } ^ { 3 }}$
$\mathrm{A}=$	$24,010 \mathrm{sf}$	$0.0009 \mathrm{mi}^{2}$
$\mathrm{Q}_{\text {peak }}=$	0.64 cfs ok	

Volume
Provided:

Drainage Area to WQS-1

$W Q$	Unit is $=$
$W Q_{f}=$ flow rate treated	(see CDS First Flush Calculations in

Drainage Area to WQS-2
WQ Unit is = CDS 1515-3 (see CDS First Flush Calculations in $\mathrm{WQ}_{\mathrm{f}}=$ flow rate treated before bypass $\mathbf{0 . 6 4} \mathbf{c f s}$ Appendix C)

Project:
Location:
Prepared For:

Purpose:

Reference: United States Department of Agriculture Natural Resources Conservation Service TR-55 Manual

Structure Name	A $($ acres $)$	\mathbf{A} $\left(\right.$ miles $\left.^{2}\right)$	Runoff Coefficient	Percent Imp. $(\%)^{*}$	$\mathbf{t}_{\mathbf{c}}$ $(\mathbf{m i n})$	$\mathbf{t}_{\mathbf{c}}$ $(\mathbf{h r})$
WQS-1	0.28	0.00044	0.90	100.00	5.0	0.083

* Assumes runoff coefficient of 0.3 for pervious areas and 0.9 for impervious areas.

Procedure: \quad The Water Quality Flow (WQF) is calculated using the Water Quality Volume (WQV). This WQV, converted to watershed inches, is substituted for the runoff depth (Q) in the Natural Resources Conservation Service (formerly Soil Conservation Service), TR-55 Graphical Peak Discharge Method.

1. Compute WQV in watershed inches using the following equation:
WQV = P * R
where: $\quad \mathrm{WQV}=$ water quality volume (watershed inches)
$\mathrm{WQV}(\mathrm{ac}-\mathrm{ft})=1$ * $1 / 12 \quad$ PER RIDEM
$P=$ design precipitation (inches) $=(1.2$ for water quality storm)
$R=$ volumetric runoff coefficient $=0.05+0.009(I)$
I = percent impervious cover

Structure Name	Percent Imp. (\%)	\mathbf{R}	P (in)	WQV (in)	WQV (ac-ft)
WQS-1	100.00	0.950	1.2	1.140	0.0237

2. Compute the NRCS Runoff Curve Number (CN) using the following equation, or graphically using Figure 2-1 from TR-55 (USDA, 1986):

$$
C N=1000 /\left[10+5 P+10 Q-10\left(Q^{2}+1.25 Q P\right)^{1 / 2}\right]
$$

where: $\quad \mathrm{CN}=$ Runoff Curve Number
$P=$ design precipitation (inches) $=\left(1.2^{\prime \prime}\right.$ for water quality storm)
$\mathrm{Q}=$ runoff depth (watershed inches)

Structure Name	Q (in)	CN
WQS-1	1.140	99.48

3. Using computed CN, read initial abstraction $\left(\mathrm{I}_{\mathrm{a}}\right)$ from Table 4-1 in Chapter 4 of TR-55; compute $\mathrm{I}_{\mathrm{a}} / \mathrm{P}$, interpolating when appropriate.

Structure Name	I_{a} (in)	$\mathrm{I}_{\mathrm{a}} / \mathbf{P}$
WQS-1	0.010	0.009

4. Compute the time of concentration $\left(\mathrm{t}_{\mathrm{c}}\right)$ in hours and the drainage area in square miles.

Structure Name	$\mathbf{t}_{\mathbf{c}}$ $\mathbf{(h r)}$	\mathbf{A} $\left(\right.$ miles $\left.^{2}\right)$
WQS-1	0.083	0.00044

5. Read the unit peak discharge $\left(q_{u}\right)$ from Exhibit 4-III in Chapter 4 of TR-55 for appropriate t_{c} for type III rainfall distribution.

Structure Name	$\mathbf{t}_{\mathbf{c}}$ $\mathbf{(h r})$	$\mathbf{I}_{\mathbf{a}} / \mathbf{P}$	$\mathbf{q}_{\mathbf{u}}$ $(\mathbf{c s m} / \mathbf{i n})$
WQS-1	0.083	0.008633541	650

6. Substituting WQV (watershed inches) for runoff depth (Q), compute the water quality flow (WQF) from the following equation:

$$
\text { WQF }=\left(q_{u}\right)^{*}(A)^{*}(Q)
$$

$$
\begin{array}{ll}
\text { where: } & \text { WQF = water quality flow }(\mathrm{cfs}) \\
& \mathrm{q}_{\mathrm{u}}=\text { unit peak discharge }\left(\mathrm{cfs} / \mathrm{mi}^{2} / \mathrm{inch}\right) \\
& A=\text { drainage area }\left(\mathrm{mi}^{2}\right) \\
& Q=\text { runoff depth (watershed inches })
\end{array}
$$

Structure Name	\mathbf{q}_{u} (csm/in)	A (miles 2)	Q (in)	WQF (cfs)
WQS-1	650	0.00044	1.140	0.33

Project:

Location:

Prepared For:

Purpose:

Reference: United States Department of Agriculture Natural Resources Conservation Service TR-55 Manual

Structure Name	\mathbf{A} $($ acres $)$	\mathbf{A} $\left(\right.$ miles $\left.^{2}\right)$	Runoff Coefficient	Percent Imp. $(\%)^{*}$	$\mathbf{t}_{\mathbf{c}}$ $(\mathbf{m i n})$	$\mathbf{t}_{\mathbf{c}}$ $(\mathbf{h r})$
WQS-2	0.55	0.00086	0.90	100.00	5.0	0.083

* Assumes runoff coefficient of 0.3 for pervious areas and 0.9 for impervious areas.

Procedure: \quad The Water Quality Flow (WQF) is calculated using the Water Quality Volume (WQV). This WQV, converted to watershed inches, is substituted for the runoff depth (Q) in the Natural Resources Conservation Service (formerly Soil Conservation Service), TR-55 Graphical Peak Discharge Method.

1. Compute WQV in watershed inches using the following equation:
WQV = P * R
where: $\quad \mathrm{WQV}=$ water quality volume (watershed inches)
WQV(ac-ft) $=1$ " * $1 / 12$ PER RIDEM
$P=$ design precipitation (inches) $=(1.2$ for water quality storm)
$R=$ volumetric runoff coefficient $=0.05+0.009(I)$
I = percent impervious cover

Structure Name	Percent Imp. (\%)	\mathbf{R}	\mathbf{P} (in)	WQV (in)	WQV (ac-ft)
WQS-2	100.00	0.950	1.2	1.140	0.0459

2. Compute the NRCS Runoff Curve Number (CN) using the following equation, or graphically using Figure 2-1 from TR-55 (USDA, 1986):

$$
C N=1000 /\left[10+5 P+10 Q-10\left(Q^{2}+1.25 Q P\right)^{1 / 2}\right]
$$

where: $\quad \mathrm{CN}=$ Runoff Curve Number
$P=$ design precipitation (inches) $=(1.2$ " for water quality storm)
$\mathrm{Q}=$ runoff depth (watershed inches)

Structure Name	Q (in)	CN
WQS-2	1.140	99.48

3. Using computed CN, read initial abstraction $\left(\mathrm{I}_{\mathrm{a}}\right)$ from Table 4-1 in Chapter 4 of TR-55; compute $\mathrm{I}_{\mathrm{a}} / \mathrm{P}$, interpolating when appropriate.

Structure Name	I_{a} (in)	$\mathrm{I}_{\mathrm{a}} / \mathbf{P}$
WQS-2	0.010	0.009

4. Compute the time of concentration $\left(\mathrm{t}_{\mathrm{c}}\right)$ in hours and the drainage area in square miles.

Structure Name	$\mathbf{t}_{\mathbf{c}}$ $(\mathbf{h r})$	\mathbf{A} $\left(\right.$ miles $\left.^{2}\right)$
WQS-2	0.083	0.00086

5. Read the unit peak discharge $\left(q_{u}\right)$ from Exhibit 4-III in Chapter 4 of TR-55 for appropriate t_{c} for type III rainfall distribution.

Structure Name	$\mathbf{t}_{\mathbf{c}}$ $\mathbf{(h r})$	$\mathbf{I}_{\mathbf{a}} / \mathbf{P}$	$\mathbf{q}_{\mathbf{u}}$ $(\mathbf{c s m} / \mathbf{i n})$
WQS-2	0.083	0.008633541	650

6. Substituting WQV (watershed inches) for runoff depth (Q), compute the water quality flow (WQF) from the following equation:

$$
\text { WQF }=\left(q_{u}\right)^{*}(A)^{*}(Q)
$$

$$
\begin{array}{ll}
\text { where: } & \text { WQF = water quality flow }(\mathrm{cfs}) \\
& \mathrm{q}_{\mathrm{u}}=\text { unit peak discharge }\left(\mathrm{cfs} / \mathrm{mi}^{2} / \mathrm{inch}\right) \\
& A=\text { drainage area }\left(\mathrm{mi}^{2}\right) \\
& Q=\text { runoff depth (watershed inches })
\end{array}
$$

Structure Name	$\mathbf{q}_{\mathbf{u}}$ (csm/in)	A (miles 2)	Q (in)	WQF (cfs)
WQS-2	650	0.00086	1.140	0.64

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD

ACHIEVEMENT FIRST ILUMINAR SCHOOL CRANSTON, RI

Area Weighted C CDS Model	$\begin{gathered} 0.28 \text { ac } \\ 0.90 \\ 5 \mathrm{~min} \\ 1515-3 \end{gathered}$		CDS	Site Designation Rainfall Station \# atment Capacity	$\begin{gathered} \text { WQS-1 } \\ 146 \\ \\ 1.0 \mathrm{cfs} \end{gathered}$
$\frac{\frac{\text { Rainfall }}{\text { Intensity }}{ }^{1}}{\text { (in/hr) }}$	Percent Rainfall Volume 1	Cumulative Rainfall Volume	$\frac{\text { Total Flowrate }}{\text { (cfs) }}$	Treated Flowrate (cfs)	Incremental Removal (\%)
0.02	9.1\%	9.1\%	0.01	0.01	9.1
0.04	8.9\%	18.0\%	0.01	0.01	8.9
0.06	9.8\%	27.7\%	0.02	0.02	9.8
0.08	8.2\%	35.9\%	0.02	0.02	8.2
0.10	7.7\%	43.6\%	0.03	0.03	7.7
0.12	5.5\%	49.1\%	0.03	0.03	5.5
0.14	5.0\%	54.2\%	0.04	0.04	5.0
0.16	4.9\%	59.1\%	0.04	0.04	4.9
0.18	4.3\%	63.4\%	0.05	0.05	4.3
0.20	4.8\%	68.2\%	0.05	0.05	4.7
0.25	7.4\%	75.6\%	0.06	0.06	7.3
0.30	5.8\%	81.5\%	0.08	0.08	5.7
0.35	4.5\%	85.9\%	0.09	0.09	4.3
0.40	2.4\%	88.3\%	0.10	0.10	2.3
0.45	2.0\%	90.3\%	0.12	0.12	1.9
0.50	1.9\%	92.1\%	0.13	0.13	1.8
0.75	5.0\%	97.1\%	0.19	0.19	4.6
1.00	1.6\%	98.7\%	0.26	0.26	1.4
1.50	0.8\%	99.5\%	0.38	0.38	0.7
2.00	0.0\%	99.5\%	0.51	0.51	0.0
$\begin{array}{r} \text { Removal Efficiency Adjustment }^{2}= \\ \text { Predicted \% Annual Rainfall Treated }= \\ \text { Predicted Net Annual Load Removal Efficiency }= \end{array}$					98.4 6.5% 93.5% 91.9%
1 - Based on 10 years of hourly precipitation data from NCDC 6698, Providence WSO Airport, Kent County, RI 2 - Reduction due to use of 60 -minute data for a site that has a time of concentration less than 30 -minutes.					

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD

ACHIEVEMENT FIRST ILUMINAR SCHOOL CRANSTON, RI

Area Weighted C CDS Model	$\begin{gathered} 0.55 \mathrm{ac} \\ 0.90 \\ 5 \mathrm{~min} \\ 2015-4 \end{gathered}$		CDS T	Site Designation Rainfall Station \# atment Capacity	$\begin{gathered} \text { WQS-2 } \\ 146 \\ \\ 0.93 \end{gathered}$
$\frac{\frac{\text { Rainfall }}{\text { Intensity }}{ }^{1}}{\text { (in/hr) }}$	$\frac{\text { Percent Rainfall }}{\underline{\text { Volume }^{1}}}$	Cumulative Rainfall Volume	$\frac{\text { Total Flowrate }}{\text { (cfs) }}$	Treated Flowrate (cfs)	Incremental Removal (\%)
0.02	9.1\%	9.1\%	0.01	0.01	8.8
0.04	8.9\%	18.0\%	0.02	0.02	8.5
0.06	9.8\%	27.7\%	0.03	0.03	9.3
0.08	8.2\%	35.9\%	0.04	0.04	7.8
0.10	7.7\%	43.6\%	0.05	0.05	7.3
0.12	5.5\%	49.1\%	0.06	0.06	5.2
0.14	5.0\%	54.2\%	0.07	0.07	4.7
0.16	4.9\%	59.1\%	0.08	0.08	4.6
0.18	4.3\%	63.4\%	0.09	0.09	4.0
0.20	4.8\%	68.2\%	0.10	0.10	4.4
0.25	7.4\%	75.6\%	0.12	0.12	6.8
0.30	5.8\%	81.5\%	0.15	0.15	5.2
0.35	4.5\%	85.9\%	0.17	0.17	4.0
0.40	2.4\%	88.3\%	0.20	0.20	2.1
0.45	2.0\%	90.3\%	0.22	0.22	1.7
0.50	1.9\%	92.1\%	0.25	0.25	1.6
0.75	5.0\%	97.1\%	0.37	0.37	3.9
1.00	1.6\%	98.7\%	0.50	0.50	1.2
1.50	0.8\%	99.5\%	0.74	0.74	0.5
2.00	0.0\%	99.5\%	0.99	0.93	0.0
2.50	0.5\%	100.0\%	1.24	0.93	0.2
$\begin{array}{r} \text { Removal Efficiency Adjustment }^{2}= \\ \text { Predicted \% Annual Rainfall Treated }= \\ \text { Predicted Net Annual Load Removal Efficiency }= \end{array}$					91.9
					$\begin{gathered} \hline 6.5 \% \\ 93.4 \% \\ 85.4 \% \end{gathered}$
1 - Based on 10 years of hourly precipitation data from NCDC 6698, Providence WSO Airport, Kent County, RI 2 - Reduction due to use of 60 -minute data for a site that has a time of concentration less than 30-minutes.					

Green International
Affiliates, Inc

RECHARGE VOLUME CALCULATIONS

Date:
Revised:
Project: Illuminar School
Project No: 21075
Location: Cranston, RI

Date: 4/15/2022
Date:
Date: 4/27/2022

Recharge Volume Design

Objective: Size an infiltration basin that will approximate the annual recharge from the existing conditions

Methodology: Rhode Island Stormwater Design and Installation Standards Manual

Design

Criteria:

Calculation

Results:

\(\left.$$
\begin{array}{|cc|} & \begin{array}{c}\text { Volume } \\
\text { Required } \\
\left(\mathrm{ft}^{3}\right)\end{array}\end{array}
$$ \begin{array}{c}Volume

Provided

\left(\mathrm{ft}^{3}\right)\end{array}\right] |\)| Designation | 2,475 |
| :--- | :---: |
| Subsurface Infiltration System | 4,489 |

Recharge Volume

Required:

Subsurface Infiltration System

$I=\quad 1.14 \mathrm{ac} \quad$ (impervious area draining to subsurface system)
(use impervious area draining to subsurface system)

$\mathrm{F}=$	0.60 in	
R_{v} Required $=$	$0.0568 \mathrm{ac}-\mathrm{ft}$	$\mathbf{2 , 4 7 5} \mathbf{~ f t}^{3}$

Required Stormwater Treatment Area

$\mathrm{I}=$	1.14 ac	(impervious area draining to subsurface system)		
$\mathrm{I}=$	1.02 ac	(Minimum treatment required - See WQV Calculation She		
$\operatorname{Re}_{\mathrm{v}} \operatorname{Required}_{(\text {Total) }}=$	1.02 ac	$<$	$\mathbf{1 . 1 4} \mathbf{~ a c}$	ok

Recharge Volume

Provided:
Subsurface Infiltration System
$\mathbf{R v}=\quad 4,489 \mathrm{ft}^{3} \quad$ (below lowest orifice based on Hydrocad Calculations)

Check that total recharge provided is greater than required stormwater treatment area:
$\operatorname{Re}_{\mathrm{v}}$ Required $_{\text {(Total) }}=\quad \mathbf{2 , 4 7 5 \mathrm { ft } ^ { 3 }}<\mathbf{4 , 4 8 9 \mathrm { ft } ^ { 3 }} \quad$ ok

Stage-Area-Storage for Pond 10P: Subsurface Infiltration System

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	
56.58	0	57.10	1,019	57.62	2,173	
56.59	20	57.11	1,039	57.63	2,227	
56.60	39	57.12	1,058	57.64	2,280	
56.61	59	57.13	1,078	57.65	2,333	
56.62	78	57.14	1,098	57.66	2,387	
56.63	98	57.15	1,117	57.67	2,440	
56.64	118	57.16	1,137	57.68	2,493	
56.65	137	57.17	1,156	57.69	2,546	
56.66	157	57.18	1,176	57.70	2,600	
56.67	176	57.19	1,196	57.71	2,653	
56.68	196	57.20	1,215	57.72	2,706	
56.69	216	57.21	1,235	57.73	2,759	
56.70	235	57.22	1,254	57.74	2,812	
56.71	255	57.23	1,274	57.75	2,865	
56.72	274	57.24	1,294	57.76	2,918	
56.73	294	57.25	1,313	57.77	2,971	
56.74	314	57.26	1,333	57.78	3,024	
56.75	333	57.27	1,352	57.79	3,077	
56.76	353	57.28	1,372	57.80	3,130	
56.77	372	57.29	1,392	57.81	3,183	
56.78	392	57.30	1,411	57.82	3,236	
56.79	412	57.31	1,431	57.83	3,288	
56.80	431	57.32	1,450	57.84	3,341	
56.81	451	57.33	1,470	57.85	3,394	
56.82	470	57.34	1,490	57.86	3,446	
56.83	490	57.35	1,509	57.87	3,499	
56.84	510	57.36	1,529	57.88	3,552	
56.85	529	57.37	1,548	57.89	3,604	
56.86	549	57.38	1,568	57.90	3,657	
56.87	568	57.39	1,588	57.91	3,709	
56.88	588	57.40	1,607	57.92	3,761	
56.89	608	57.41	1,627	57.93	3,814	
56.90	627	57.42	1,646	57.94	3,866	
56.91	647	57.43	1,666	57.95	3,918	
56.92	666	57.44	1,686	57.96	3,970	
56.93	686	57.45	1,705	57.97	4,022	
56.94	706	57.46	1,725	57.98	4,074	
56.95	725	57.47	1,744	57.99	4,127	
56.96	745	57.48	1,764	58.00	4,179	
56.97	764	57.49	1,784	58.01	4,230	
56.98	784	57.50	1,803	58.02	4,282	
56.99	804	57.51	1,823	58.03	4,334	WATER QUALITY
57.00	823	57.52	1,842	58.04	4,386	STORAGE VOLUME
57.01	843	57.53	1,862	58.05	4,438	BELOW LOWEST
57.02	862	57.54	1,882	58.06	4,489	OUTLET
57.03	882	57.55	1,901	58.07	4,541	
57.04	902	57.56	1,921	58.08	4,593	
57.05	921	57.57	1,940	58.09	4,644	
57.06	941	57.58	1,960	58.10	4,696	
57.07	960	57.59	2,013	58.11	4,747	
57.08	980	57.60	2,067	58.12	4,798	
57.09	1,000	57.61	2,120	58.13	4,850	

Stage-Area-Storage for Pond 10P: Subsurface Infiltration System (continued)

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)
58.14	4,901	58.66	7,476	59.18	9,816
58.15	4,952	58.67	7,523	59.19	9,858
58.16	5,003	58.68	7,571	59.20	9,900
58.17	5,054	58.69	7,618	59.21	9,941
58.18	5,105	58.70	7,665	59.22	9,983
58.19	5,156	58.71	7,712	59.23	10,024
58.20	5,207	58.72	7,759	59.24	10,065
58.21	5,258	58.73	7,806	59.25	10,107
58.22	5,308	58.74	7,853	59.26	10,147
58.23	5,359	58.75	7,900	59.27	10,188
58.24	5,410	58.76	7,947	59.28	10,229
58.25	5,460	58.77	7,993	59.29	10,269
58.26	5,511	58.78	8,040	59.30	10,309
58.27	5,561	58.79	8,086	59.31	10,349
58.28	5,612	58.80	8,133	59.32	10,389
58.29	5,662	58.81	8,179	59.33	10,429
58.30	5,712	58.82	8,225	59.34	10,469
58.31	5,762	58.83	8,271	59.35	10,508
58.32	5,813	58.84	8,317	59.36	10,547
58.33	5,863	58.85	8,363	59.37	10,586
58.34	5,913	58.86	8,408	59.38	10,625
58.35	5,963	58.87	8,454	59.39	10,664
58.36	6,012	58.88	8,500	59.40	10,703
58.37	6,062	58.89	8,545	59.41	10,741
58.38	6,112	58.90	8,590	59.42	10,779
58.39	6,162	58.91	8,636	59.43	10,817
58.40	6,211	58.92	8,681	59.44	10,855
58.41	6,261	58.93	8,726	59.45	10,893
58.42	6,310	58.94	8,771	59.46	10,931
58.43	6,360	58.95	8,816	59.47	10,968
58.44	6,409	58.96	8,860	59.48	11,005
58.45	6,458	58.97	8,905	59.49	11,042
58.46	6,507	58.98	8,950	59.50	11,079
58.47	6,557	58.99	8,994	59.51	11,116
58.48	6,606	59.00	9,038	59.52	11,152
58.49	6,655	59.01	9,082	59.53	11,189
58.50	6,703	59.02	9,126	59.54	11,225
58.51	6,752	59.03	9,170	59.55	11,261
58.52	6,801	59.04	9,214	59.56	11,296
58.53	6,850	59.05	9,258	59.57	11,332
58.54	6,898	59.06	9,302	59.58	11,367
58.55	6,947	59.07	9,345	59.59	11,402
58.56	6,995	59.08	9,388	59.60	11,437
58.57	7,044	59.09	9,432	59.61	11,471
58.58	7,092	59.10	9,475	59.62	11,505
58.59	7,140	59.11	9,518	59.63	11,539
58.60	7,188	59.12	9,561	59.64	11,573
58.61	7,236	59.13	9,604	59.65	11,607
58.62	7,284	59.14	9,646	59.66	11,640
58.63	7,332	59.15	9,689	59.67	11,673
58.64	7,380	59.16	9,731	59.68	11,706
58.65	7,428	59.17	9,774	59.69	11,738

Stage-Area-Storage for Pond 10P: Subsurface Infiltration System (continued)

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
59.70	11,770	60.22	12,987
59.71	11,802	60.23	13,007
59.72	11,833	60.24	13,027
59.73	11,864	60.25	13,046
59.74	11,895	60.26	13,066
59.75	11,925	60.27	13,085
59.76	11,955	60.28	13,105
59.77	11,985	60.29	13,125
59.78	12,014	60.30	13,144
59.79	12,042	60.31	13,164
59.80	12,070	60.32	13,183
59.81	12,098	60.33	13,203
59.82	12,125	60.34	13,223
59.83	12,152	60.35	13,242
59.84	12,178	60.36	13,262
59.85	12,204	60.37	13,281
59.86	12,229	60.38	13,301
59.87	12,254	60.39	13,321
59.88	12,279	60.40	13,340
59.89	12,303	60.41	13,360
59.90	12,027	60.42	13,379
59.91	12,350	60.43	13,399
59.92	12,373	60.44	13,419
59.93	12,396	60.45	13,438
59.94	12,418	60.46	13,458
59.95	12,441	60.47	13,477
59.96	12,463	60.48	13,497
59.97	12,485	60.49	13,517
59.98	12,507	60.50	13,536
59.99	12,528	60.51	13,556
60.00	12,549	60.52	13,575
60.01	12,571	60.53	13,595
60.02	12,591	60.54	13,615
60.03	12,612	60.55	13,634
60.04	12,633	60.56	13,654
60.05	12,653	60.57	13,673
60.06	12,673	60.58	13,693
60.07	12,693		
60.08	12,713		
60.09	12,733		
60.10	12,552		
60.11	12,772		
60.12	12,791		
60.13	12,811		
60.14	12,831		
60.15	12,850		
60.16	12,870		
60.17	12,889		
60.18	12,909		
60.19	12,929		
60.20	12,948		
60.21	12,968		

APPENDIX D - SOIL INFORMATION

- NRCS Soil Survey
- Geotechnical Report

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)	\square	C/D
Soils	\square	D
Soil Rating Polygons		
$\square \mathrm{A}$	\square	Not rated or not available
A/D	Water Fe	ures
B		Streams and Canals
	Transpo	tion
B/D	H+	Rails
C	-	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	D	Local Roads
Soil Rating Lines	Background	
\cdots A	-	Aerial Photography
\cdots A/D		
\cdots B		
\cdots B/D		
$\Leftrightarrow \mathrm{C}$		
\cdots C/D		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad A$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
- B/D		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements
Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: State of Rhode Island: Bristol, Kent, Newport, Providence, and Washington Counties
Survey Area Data: Version 21, Sep 3, 2021
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 3, 2019—Jul 18, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
MU	Merrimac-Urban land complex, 0 to 8 percent slopes	A	61.6	41.0%
Pg	Pits, gravel		5.9	3.9%
UD	Udorthents-Urban land complex	A	34.9	23.2%
Ur	Urban land		43.0	28.6%
W	Water		4.8	3.2%
Totals for Area of Interest	$\mathbf{1 5 0 . 2}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

GEOTECHNICAL ENGINEERING REPORT
 FOR THE PROPOSED ACHIEVEMENT FIRST SCHOOL ADDITION CRANSTON, RHODE ISLAND

Prepared for:

Achievement First Illuminar School 85 Garfield Avenue
Cranston, Rhode Island

Prepared by:

Paul B. Aldinger \& Associates, Inc.
860A Waterman Avenue Suite 9
East Providence, Rhode Island 02914

PBA No. 21020
February 2022

PAUL B. ALDINGER \& ASSOCIATES, INC.
Consulting in Geotechnical Engineering \& Groundwater Hydrology
860A Waterman Avenue Suite 9 East Providence, Rhode Island 02914 (401) 435-5570

February 22, 2022
Ms. Sandra Waterman
Project Manager
Colliers Project Leaders
72 Pine Street
Providence, Rhode Island 02903
Re: Geotechnical Engineering Report
Achievement First School
85 Garfield Avenue
Cranston, Rhode Island
PBA No. 21020

Dear Ms. Waterman:
Paul B. Aldinger \& Associates, Inc. (PBA) is pleased to provide Achievement First (AF) with this geotechnical engineering report for the above referenced project. This report is subject to the limitations that are outlined in Appendix A.

1.00 INTRODUCTION/PROJECT DESCRIPTION

The project site is located at 85 Garfield Avenue in Cranston, Rhode Island. Figure No. 1, Site Vicinity Plan, indicates the location of the project site. The project consists of the construction of an approximate 15,500 square foot building addition to an existing three-story building with an approximate footprint of 20,600 square feet. The proposed addition will be two-stories in height and be constructed north of the existing building, which will remain.

The project site is situated just west of the Huntington Expressway (Route 10) in Cranston, Rhode Island. The project site is immediately bordered by Garfield Avenue to the east, a Cranston Police Station and associated paved parking lot to the north, a paved bike trail, the Washington Secondary Trail, and residential structures to the west, and Tongue Pond to the south. The project site is currently relatively flat and consists of mostly paved parking areas, with the exception of an area just north of and just east of the existing building, which consists of grassy area.

We reviewed a set of four (4) drawings provided to us that were developed by Kaestle Boos Associates, Inc. Two (2) of the drawings, titled "Site Plan - Option 2" and "Site Plan - Option 2A," are dated April 5, 2021, and indicate an aerial photo of the site with the footprints of the
existing building, the proposed addition, the proposed multi-purpose sports field and basketball court, and other proposed site features. The other two (2) drawings are undated and are titled "Achievement First Iluminar School." These plans appear to include the floor plans for the first and second floor of the proposed addition. The proposed floor plans indicate a gymnasium, stairwells, administration offices, storage rooms, bathrooms, classrooms, and areas proposed for other use. We were also provided with a plan developed by Sage Environmental entitled, Capping Site Plan, 85 Garfield Avenue, Cranston, Rhode Island and dated July 29, 2019. The plan indicates the details of an environmental cap installed at the site at the time of conversion from an office building to a school.

Review of available historical aerial photographs indicates that the site was developed prior to the earliest available aerial photograph, 1939. The historical aerial photographs also indicate that there was once a building situated in the northwest corner of the project site. Figure 1, Site Vicinity Plan appears to indicate the approximate footprint of the previously existing building. The former building appears to have been demolished in the late 1990s or early 2000s. The historical aerial photographs indicate that the existing on-site building was constructed in 2003.

The objectives of our engineering services were to coordinate and monitor a subsurface exploration program, perform geotechnical engineering analyses, and develop an engineering report with specific earthwork and foundation design recommendations for the proposed addition.

2.00 GEOLOGY

2.10 Surficial Geology

The 1956 US Geological Survey, Geologic Map of the Providence Quadrangle, Rhode Island, Surficial Geology, compiled by J. Hiram Smith indicates that the surficial geology underlying the project site is Outwash Plains. The Outwash Plains deposit is reportedly described as sorted sand and local deposits of coarse gravel.

The 1957 US Geological Survey Map, Showing Location of Selected Wells and Test Borings, Contours on Bedrock Surface, and Outwash Deposits, Providence Quadrangle, Rhode Island, complied by W. H. Bierschenk and J.H. Smith, indicates that the surficial geology underlying the project site consists of Outwash Deposits. This map also indicates the location of two wells, test borings or U.S. Geological Survey observation wells that were installed in the site vicinity. One of the wells or test borings was installed just south of the existing on-site building and the other was installed within the existing on-site parking lot, to the northeast of the existing building and proposed addition. The well or test boring installed just south of the existing on-site building encountered bedrock at an altitude of 34 feet below mean sea level, approximately 104 feet below
the ground surface. The well or test boring installed within the existing on-site parking lot encountered bedrock at an altitude of 100 feet below mean sea level, approximately 170 feet below the ground surface.

2.20 Bedrock Geology

The 1959 US Geological Survey, Geologic Map of the Providence Quadrangle, Rhode Island, Bedrock Geology, compiled by Alonzo W. Quinn indicates that the bedrock underlying the project site is Rhode Island Formation. In 1994, US Geological Survey further refined its mapping with Bedrock Geologic Map of Rhode Island, compiled by O.D. Hermes, L.P. Gromet, and D.P. Murray indicating that the bedrock underlying the project site is Rhode Island Formation. In this part of Rhode Island, the Rhode Island Formation is described as gray to black, fine to coarse grained quartz.

3.00 SUBSURFACE INVESTIGATION PROGRAM

The subsurface exploration program consisted of 4 test borings (B-1, B-2, B-4 and B-6) completed between January 10 and 13, 2022 by Sage EnviroTech Drilling Services of Pawtucket, Rhode Island. The locations of the explorations were located by tape measurement from the existing building and are indicated on the Boring Location Plan included as Figure 2. Test borings were observed and logged by an engineering technician and the logs are included in Appendix B, Test Boring Logs. Test borings were completed within the footprint of the proposed building addition, where drill rig access was feasible.

The test borings were advanced with the dual tube method to depths between 52 and 87 feet below the ground surface. Standard split spoon soil samples were obtained at intervals of 5 feet using a $13 / 8$-inch inside diameter split spoon sampler in substantial conformance with ASTM D1586, the Standard Penetration Test (SPT). The standard ASTM method of driving the sampler was employed using a 140 -pound hammer falling 30 inches. The number of blows required to drive the sampler for each 6 inches of penetration was recorded. The number of blows required to drive the sampler from 6 to 18 inches of penetration is the SPT blow count (N -value), a commonly-used indicator of soil density.

4.00 SUBSURFACE CONDITIONS

Generalized soil conditions encountered in the subsurface explorations include the following strata from the ground surface downward. Actual conditions between the subsurface explorations will likely vary. Refer to the logs in Appendix B for more detailed descriptions of the conditions encountered.

Paul B. Aldinger \& Associates, Inc.

4.10 Soil Conditions

Granular Fill - A layer of Silty Granular Fill was encountered beginning at the ground surface and extending to a depth of approximately one foot. This soil was placed as part of an earthen site capping. The earthen cap also consists of a geotextile fabric underlying the clean granular fill. The engineered earthen cap is underlain by;

Glacial Outwash - Very loose to medium dense glacial outwash consisting of light brown or gray, fine sand with varying amounts of silt present. The average SPT blow count value (uncorrected N -value) of the glacial outwash stratum was approximately 13.

4.20 Groundwater Conditions

Groundwater was measured at depths between approximately 21.6 and 25 feet below the ground surface at the time of the drilling. It should be noted that fluctuations in the levels of the groundwater will likely occur due to variations in rainfall, temperature, and other factors occurring since the time measurements were made.

5.00 LABORATORY TESTING DATA

Ten soil samples were laboratory tested to determine the percentage of fines (material passing the No. 200 sieve) present in order to refine our seismic evaluation of the site. The results of the laboratory analyses are included in Appendix C and a brief description is included in the table below.

Boring \& Sample Number	Depth (feet)	Percent Finer than No. 200 sieve	Soil Description						
B-1 S-10	$45-47$	9.2	fine to coarse SAND, some fine to						
coarse Gravel, trace Silt				$	$	B-1 S-11	$50-52$	12.8	fine to coarse SAND, little fine to coarse Gravel, little Silt
:---:	:---:	:---:	:---:						
B-2 S-9	$40-42$	49.1	fine to medium SAND and SILT						

Paul B. Aldinger \& Associates, Inc.

File No: 21020 - Achievement First School.wpd

Boring \& Sample Number	Depth (feet)	Percent Finer than No. 200 sieve	Soil Description
$\begin{gathered} \text { B-2 } \\ \text { S-10 } \end{gathered}$	45-47	41.3	fine to medium SAND and SILT
$\begin{gathered} \mathrm{B}-2 \\ \mathrm{~S}-11 \end{gathered}$	50-52	60.1	SILT \& CLAY, some f-m Sand, little fine to coarse Gravel
$\begin{gathered} \text { B-4 } \\ \text { S-10 } \end{gathered}$	30-32	6.9	fine to medium SAND, trace Silt, trace fine Gravel
$\begin{gathered} \text { B-4 } \\ \text { S-13 } \end{gathered}$	45-47	43.5	fine to medium SAND and Clayey SILT
$\begin{gathered} \text { B-4 } \\ \text { S-14 } \end{gathered}$	50-52	51.0	Clayey SILT and fine to medium SAND
$\begin{aligned} & \text { B-6 } \\ & \text { S-6 } \end{aligned}$	25-27	5.0	fine to medium SAND, trace Silt, trace fine Gravel
$\begin{aligned} & \mathrm{B}-6 \\ & \mathrm{~S}-7 \\ & \hline \end{aligned}$	30-32	11.2	fine to medium SAND, little Silt, trace fine Gravel

6.00 DISCUSSION AND FEASIBLE FOUNDATION OPTIONS

The proposed Achievement First School building addition will extend from the north side of the existing on-site building. It is our understanding that a basement will not be part of the proposed addition. Project test borings were drilled within the footprint of the proposed building addition. Subsurface soils encountered during the subsurface investigation program consisted of placed granular fill as part of an environmental capping system to a depth of 1 foot below grade underlain by glacial outwash. Groundwater was encountered at depths between 21.6 and 25 feet below the ground surface.

The soil encountered underlying the project site consisted of very loose sands to depths of approximately 50 feet. Loose sands below the groundwater table are problematic with respect to seismic considerations. Upon completion of the required seismic analyses for the site, we have determined that the site is not suitable for direct support of a structure on a typical shallow foundation. We have therefore considered two foundation alternatives for the proposed addition:

Paul B. Aldinger \& Associates, Inc.
support on deep foundations, such as driven or cast-in-place piles, or ground modification, such as Geopier rammed aggregate piers into the glacial outwash with shallow spread footing support on the improved site. Support on a deep foundation would require the use of a structural slab and pile caps supported by either driven or cast-in-place piles while a shallow building foundation composed of a slab-on-grade and footings could be utilized for support after a ground modification program. With either approach, it is recommended that the edge columns closest to the existing building be located as far as possible from the existing building to minimize the potential disturbance during foundation construction.

We believe that support of the building foundation after subgrade improvement would efficiently and cost effectively allow for the existing poor quality site soils beneath the building to remain inplace and allow for an economical shallow footing with a slab-on-grade building foundation approach to be implemented. The recommended approach is referred to as a "ground modification" system.

6.10 Pile Foundation

A deep foundation consisting of driven or cast-in-place piles could be used for support the new addition. Piles would be installed at each footing as well as on a grid spacing beneath the slab-ongrade, requiring the use of a reinforced structural slab.

Piles extending below the loose saturated sands could be utilized for support of the structure. The anticipated pile lengths are greater than 60 to 70 feet in order to derive principal support from the medium dense to dense natural soils encountered at those greater depths. Although a pile load test is not required by the Rhode Island Building Code if the desired capacity is less than 40 -tons, we recommend that one be completed to confirm the ability to achieve the desired capacity. A minimum of three piles would be required for each individual column.

6.20 Rammed Aggregate Piers

The recommenced building foundation ground improvement system consists of vertical subgrade soil reinforcing elements, relatively stiff columns, comprised of crushed aggregate with or without the use of cementitious grout. The aggregate columns are installed from the existing ground surface down into the competent natural soil stratum a sufficient distance and in sufficient numbers to develop the required shallow building foundation resistance. The reinforcing elements are considered stiff in relation to the existing soil stratigraphy being reinforced. In this report, we will refer to the stiff elements as Rammed Aggregate Piers (RAPs), which can be either with or without a cementitious component.

Paul B. Aldinger \& Associates, Inc.

Over-excavation and replacement of loose saturated sands would not be required. The advantage of this system is that since the materials used are less expensive, the costs for moderate loadings should be lower than a competing pile system. The design would also incorporate a typical spread footing and slab-on-grade foundation rather than a structural slab and pile cap system which could also provide a cost savings. This is an advantage not only in the lower slab cost but also is much less restrictive in the event that utilities beneath the slab must be changed or upgraded.

Displacement Geopiers could be installed which are approximately 24 inches in diameter and would be installed with a mandrel that incorporates a beveled tamper plate through the loose saturated sands to the more dense glacial outwash layer. A lift of crushed aggregate is placed at the bottom of this excavation and vibrated to create a bulb of aggregate material at the bottom of the pier. Subsequent lifts of aggregate are placed and rammed in thicknesses of approximately 12 inches. The allowable bearing capacity is a function of the Geopier spacing and depth of the unsuitable soil. The interior and exterior footings may need to be slightly oversized to incorporate the proper design spacing of the Geopiers.

A typical shallow building footing and slab-on-grade system would be compatible with a properly designed building area specific ground improvement system. Assuming all installed stiff elements are of the same resistance capability, the plan-view spacing of the reinforcing elements would necessarily be closer beneath the building's principal load carrying components, the footings, and would be wider beneath the slab-on-grade. The stiff elements would not directly contact the building's footings or slab-on-grade, but would terminate typically a foot or less beneath bottom-of-footing, with more separation distance (on the order of several feet) between bottom of slab-ongrade and top of the supporting stiff elements. The slab-on-grade's increased separation distance is advantageous from the standpoint of providing an immediately below slab-on-grade space for the building footprint utilities.

Within the under-footing separation space, a compacted high friction angle crushed stone or wellgraded gravel and sand product is constructed to transition the high stress resistance condition at the top of the stiff elements, to an acceptable bottom-of-footing subgrade resistance and resistance variation. This footing transition space component of the ground improvement system will be referred to as the footing "pad." The variation in resistance provided to the bottom-of-footing between the reinforced subgrade above the RAP and that between the RAPs must be limited to a level of variation which is acceptable to the project's Structural Engineer for the conventional reinforced concrete footing design.

Beneath the slab-on-grade, where a greater separation distance is provided above the wider spaced stiff elements, a lower and more uniform reinforced subgrade resistance and resistance variation is required at bottom of slab-on-grade, to be acceptable to the project's Structural Engineer for a

Paul B. Aldinger \& Associates, Inc.

conventional slab-on-grade reinforced concrete design.
The ground improvement system is designed to meet both footing and slab-on-grade requirements as far as subgrade resistance (bearing capacity), resistance variation at bottom of foundation, and total/differential settlement under building load. The design and construction of the ground improvement system is a specialty geotechnical Contractor work scope employing a proprietary construction approach, design technique and their unique system performance experience.

7.00 DESIGN RECOMMENDATIONS

Based on our understanding of the project and the anticipated loads, we believe either of the options provided above would be a feasible foundation for the proposed structure. However, we anticipate there may be a significant cost savings with the use of Geopiers, when compared to other options. The final selection of a foundation type, however, should include an economic evaluation. It is suggested that once a building structure design is finalized then the feasible foundation options presented above be considered by your design team with assistance from PBA and the contractor and the final selection be made on the basis of economic comparison.

7.10 Design of Piles

7.11 Load Testing - We recommend that three test piles be installed and one selected for testing to determine the capacity of the piles. The test must demonstrate that the pile, installed in accordance with the specified criteria, has an ultimate capacity of at least two times the design load. The procedures for conducting and interpreting the load test must satisfy the provisions of the International Building Code (IBC), Rhode Island State Building Code (RISBC) and ASTM D1143.
7.12 Obstructions- Although not expected, should obstructions be encountered when installing the piles, pre-augering or spudding of piles would be needed in the event obstructions are encountered. The spacing of the piles is also a consideration in preaugering piles.
7.13 Pile Spacing-For preliminary design purposes the recommended minimum center to center spacing of the piles should be as indicated in the current edition of the Rhode Island State Building Code and the International Building Code.
7.14 Foundation Installation Monitoring - A field geotechnical engineer should be present to maintain a record of the pile test and installation operation for each pile to verify the installed bearing capacity as inferred from the pile installation record and to notify the

Paul B. Aldinger \& Associates, Inc.
project geotechnical engineer if any pile installation modifications are warranted.

7.20 Geopier Design Requirements

7.21 Modulus Test - A modulus test should be performed on a representative Geopier to verify parameters selected during design. The maximum static test load is recommended to be a minimum of twice the RAP design resistance. The test should be conducted in accordance with the manufacturer specifications and should meet the general test procedures for establishing load increments, load duration and load decrements as provided in ASTM D-1143.
7.22 Obstructions - Obstructions, if encountered, may require pre-augering or over-excavation. The auger should be spun in (part of the depth of the fill) and then spun out upon removal in order to leave the soil in a loosened state without leaving an open hole which may cave in.
7.23 Foundation and Slab Support - Shallow spread footings should be constructed bearing on Gravel Borrow placed on the completed improved site. All footings should be placed on a one foot minimum layer of Gravel Borrow. For estimating purposes, we recommend the allowable soil bearing pressure should not exceed 3 kips per square foot with footing widths of 2 feet or wider. Using this bearing pressure, we estimated a total settlement of less than 1 inch. This bearing capacity may be revised at the time the Geopier design is completed. No footings should be less than 2 feet wide. Minimum depths for frost protection of exterior footings should be a minimum of 3 feet- 4 inches.

We recommend that the slabs-on-grade bear on compacted Gravel Borrow placed on a minimum of one foot of compacted Gravel Borrow after completion of the ground improvement. Compaction should be to a minimum of 95 -percent of maximum dry density as determined by ASTM D-1557.
7.24 Foundation Installation Monitoring - A field geotechnical engineer should be present to maintain a record of the modulus test and installation operation for each RAP to verify the installed bearing capacity as inferred from the installation record and to notify the project geotechnical engineer if any installation modifications are warranted.

7.30 Additional Site Development Issues

7.31 Dewatering \& Control of Surface Water Runoff- All excavation and backfill must be conducted in the dry. Based on the observed groundwater level of more than 20 feet below ground surface, dewatering is not anticipated to be required.

Paul B. Aldinger \& Associates, Inc.

The contractor should provide for proper drainage of surface water away from any excavations. Surface water during construction should be minimal if work is performed during periods of low rainfall; however, if precipitation occurs during the work, the contractor should be required to divert surface water and pump out any collected water.
7.32 Reuse of On-site Soils - Based on the visual classification of the on-site soils, it would appear that some of the soil may meet the gradation requirements for reuse. Any material considered for reuse should be tested for compliance with the project specifications.
7.33 Backfill and Compaction - Granular fill to be used beneath footings and extending 10 feet outside the building footprint, under slabs and pavement should conform to the requirements of structural fill as indicated in the table below.

Sieve Size	Percent Passing by Weight
$2^{\prime \prime}$	100
$1 / 2^{\prime \prime}$	$50-85$
$3 / 8^{\prime \prime}$	$45-80$
No. 4	$40-75$
No. 40	$0-45$
No. 200	$0-8$

Where footings or slabs-on-grade are constructed on compacted structural fill, it should be placed and compacted in lifts not exceeding one foot in thickness to a minimum of 95percent of the maximum dry density as determined by ASTM D-1557, the Modified Proctor Density Test. Under paved areas, fills and backfills should be compacted to 90 percent of the maximum material dry density, except the last two feet, which should be compacted to 95 -percent.
7.34 Seismic Design Requirements - We have considered seismic design requirements for the site in accordance with the requirements of the Rhode Island State Building Code (RIBC). Based upon the subsurface data collected, it is our opinion that the site soils are considered susceptible to liquefaction. Using the results of the borings and recorded depths to groundwater between 21.6 and 25 feet below grade, we completed an evaluation of liquefaction susceptibility for the site during a credible earthquake. The results of the evaluation indicated that the loose saturated subsurface sands are susceptible to liquefaction, with an inadequate factor of safety from the analysis.

Paul B. Aldinger \& Associates, Inc.

Based upon our interpretation of the Site Seismic Classifications provided in the ASCE 7, Site Classification Procedure for Seismic Design, as referenced by the International Building Code (IBC 2015, the basis for the RIBC), we recommend that a Site Class of E be utilized for design. From the most recent Rhode Island amendments to the IBC, the Seismic Site Coefficients, $S s$ and $S 1$ for the City of Cranston are $S s=0.232$ and $S 1=0.060$.
7.35 Excavation Support - Given the open area for the new building addition and the minimal depth of excavation required, excavation support is not anticipated to be required. It is anticipated that during the excavation and foundation construction, temporary excavation slopes above the groundwater table (without surcharges) can be excavated at 1.5 horizontal to 1 vertical inclination.
7.36 Lateral Earth Pressures - We understand that the new addition will be slab-on-grade construction and do not anticipate that a basement will be included. However, should below-grade retaining walls be needed at the connection to the existing building, an at-rest lateral earth pressure coefficient of 0.47 for unyielding walls, an active lateral earth pressure coefficient of 0.31 for yielding walls, and a saturated unit weight of 130 pounds per cubic foot are recommend where the walls are to be backfilled with Gravel Borrow.
7.37 Preconstruction Survey and Vibration Monitoring - Significant construction vibration caused by compaction of earth fills could impact nearby structures. It is our experience that vibration from ground improvement techniques typically drop below disturbance levels within approximately 50 feet of the source. We recommend that PBA be hired to conduct a pre-construction survey of adjacent existing structures within 200 feet of construction activities, this would include the existing school building. The purpose of the survey is to document existing conditions in the event that structure damage is alleged to have occurred due to construction activities. The survey should consist of relevant photographs, video recording, sketches and descriptive text to document conditions prior to construction.

The Contractor should be required by specification to conduct their operations without causing damage to adjacent and nearby structures. The Contractor should limit construction vibration levels to acceptable peak particle velocity (PPV) levels at adjacent or near by structures consistent with structure type and condition, conservatively set at 0.5 inches per second for discrete impact type vibration event activity, and 0.2 to 0.3 inch per second for continuous vibration activities, e.g. vibratory compaction of backfill. A lower criteria may be required for specific structures and/or equipment known to be sensitive to vibrations. During construction, we recommend that PBA be hired to selectively monitor construction vibration at/near adjacent or nearby structures, specifically during the

Paul B. Aldinger \& Associates, Inc.
mentioned vibration producing construction activities. The specifications should require construction activity suspension and/or modification, if vibration levels approach or exceed specified threshold values.

8.00 FINAL DESIGN \& CONSTRUCTION MONITORING

It is recommended that PBA be provided the opportunity to review foundation design plans and prepare or review project earthwork specifications to ensure that our recommendations have been properly interpreted. The Rhode State Island Building Code requires that the subgrade preparation and fill compaction be monitored and tested for compliance within its special inspections requirements. Accordingly we recommend that PBA provide a geotechnical engineer or qualified engineering technician, qualified by training and experience to be present during construction to perform the following:
A. conduct a preconstruction survey of structures within 200 feet of construction activities which may cause vibrations in order to document their existing conditions prior to construction,
B. monitor vibrations with a seismograph(s) during construction,
C. monitor the installation and testing of RAP elements, and
D. monitor the placement and compaction of backfill materials.

In addition, the PBA geotechnical engineer or qualified engineering technician would observe compliance with the design concepts, specifications and recommendations, and assist in developing design or construction changes in the event that subsurface conditions differs from those anticipated prior to start of construction.

We appreciate the opportunity to have been of service to Achievement First and we trust that the information contained in this report is adequate for your needs at this time. Please contact the undersigned if there are questions on these recommendations or if you need additional information.

Very truly yours,
PAUL B. ALDINGER \& ASSOCIATES, INC.

Paul B. Aldinger \& Associates, Inc.

FIGURES

\rightarrow co

APPENDIX A

LIMITATIONS

APPENDIX A

LIMITATIONS

A. Explorations

1. The analyses and recommendations submitted in this report are based in part upon the data obtained from subsurface explorations. The nature and extent of variations between these explorations may not become evident until construction. If variations then appear evident, it will be necessary to reevaluate the recommendations of this report.
2. The generalized soil profiles described in the text and shown on the figures are intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples; actual soil transitions are probably more erratic. For specific information, refer to the boring logs.
3. Water level readings have been made in the drill holes at times and under conditions stated on the boring logs. These data have been reviewed and interpretations have been made in the text of this report; however, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature, tide and other factors occurring since the time measurements were made.

B. Review

1. In the event that any changes in the nature, design, or location of the proposed structures are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report are modified or verified in writing by Paul B. Aldinger \& Associates, Inc. It is recommended that this firm be provided the opportunity for a general review of final design and specifications, in order that earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications.

C. Construction

1. It is recommended that this firm be retained to provide soil engineering services during construction of the excavation and foundation phases of the work. This is to observe compliance with the design concepts, specifications, or recommendations and to allow design changes in the event that subsurface

Paul B. Aldinger \& Associates, Inc.
conditions differ from those anticipated prior to the start of construction.

D. Use of Report

1. This report has been prepared for the exclusive use of Achievement First for specific application to the proposed Achievement First School located at 85 Garfield Avenue in Cranston, Rhode Island in accordance with generally accepted soil and foundation engineering practices. No warranty, express or implied, is made.
2. This report may contain comparative cost estimates for the purpose of evaluating alternative construction schemes. These estimates may also involve approximate quantity evaluations. It should be noted that quantity estimates may not be accurate enough for construction bids. Since Paul B. Aldinger \& Associates, Inc. has no control over labor and materials cost and design, the estimates of construction costs have been made on the basis of experience. We cannot guarantee the accuracy of cost estimates as compared to contractors' bids for construction costs.

APPENDIX B

TEST BORING LOGS

APPENDIX C

LABORATORY TESTING RESULTS

APPENDIX E - DRAFT SOIL AND EROSION AND SEDIMENT CONTROL PLAN (SESC) (BOUND SEPARATELY)

APPENDIX F -PLANS (BOUND SEPARATELY)

[^0]: ${ }^{1}$ Applications for a Construction General Permit that do not require any other permits from RIDEM and will disturb less than 5 acres over the entire course of the project do not need to submit a SMP. The Appendix A checklist must still be submitted.

[^1]: * Enter the name of the STP (both type and label) which has been designed to treat this particular Rev or Rea.

